Oxide thermoelectric materials have been considered to be potential candidates in high-temperature thermoelectric power generation, however, their high thermal conductivity renders them inferior to the conventional thermoelectric materials and limit their practical application. In this paper, we successfully reduce the thermal conductivity of CdO polycrystals through Ca2+ doping, and the improvement in ZT is also obtained due to the low thermal conductivity. Cd1-xCaxO (x=0, 0.01, 0.03, 0.08) polycrystals are synthesized by adding CaCO3 into CdO via conventional solid-state reaction method and their high-temperature thermoelectric properties are studied. XRD results reveal that all samples are composed of CdO polycrystals, and the lattice parameters increase with Ca2+ content due to the larger radius of Ca2+ as compared with that of Cd2+. Addition of CaCO3 can induce the formation of point defects as well as pores in the CdO polycrystals, thus inhibits the grain growth of CdO and induces the increase of grain boundaries. The main electron carriers in CdO are reported to be shallow level donor impurities formed by oxygen vacancies; as the Ca2+ concentration in Cd1-xCaxO increases, the conduction band minimum of the samples shifts upward and the level of donor impurity becomes deeper, finally resulting in the decrease of electron carrier concentration. Meanwhile, the reduced carrier concentration in the doped samples leads to the increase of both the electrical resistivity ρ and the absolute Seebeck coefficient |S|, while the electrical thermal conductivity κ e will decrease with increasing Ca content. Investigations on the thermal properties of the obtained samples demonstrate that the introduction of Ca2+ is effective to suppress the thermal conductivity. The increment of pores and grain boundaries in the doped samples will enhance the long-wavelength phonon scattering, resulting in the decrease of phonon thermal conductivity κ p. Furthermore, the point defects, which come from the mass and size differences between Ca and Cd atoms, also act as scattering centers and lead to a considerable decrease in phonon thermal conductivity. Due to the simultaneous reduction of both electrical and phonon thermal conductivity, the total thermal conductivity κ may substantially be suppressed, for example, the total thermal conductivity of Cd0.95Ca0.05O reaches 2.2 W·m-1·K-1 at 1000 K, a remarkable decrease as compared with pristine CdO, which is 3.6 W·m-1·K-1 measured at the same temperature. Benefiting from the drastically reduced thermal conductivity, Cd0.99Ca0.01O polycrystals can achieve a high ZT of 0.42 at 1000 K, 27% higher than the pure CdO, which is one of the best n-type oxide TE materials reported so far.