搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

李俊, 崔江煜, 杨晓东, 罗智煌, 潘健, 余琦, 李兆凯, 彭新华, 杜江峰

Quantum control of nuclear magnetic resonance spin systems

Li Jun, Cui Jiang-Yu, Yang Xiao-Dong, Luo Zhi-Huang, Pan Jian, Yu Qi, Li Zhao-Kai, Peng Xin-Hua, Du Jiang-Feng
PDF
导出引用
  • 近年来, 随着量子信息科学的发展, 对由量子力学原理描述的微观世界的主动调控已成为重要的前沿研究领域. 为构造实际的量子信息处理器, 一个关键的挑战是: 如何对处于噪声环境下的量子体系实现一系列高精度的任意操作, 以完成目标量子信息处理任务. 为此, 人们将经典系统控制论的思想方法延伸到量子体系的领域, 提出了大量的量子控制方法以及相关的数值技术(如量子优化控制、量子反馈控制等), 并取得了丰富的研究成果. 核磁共振自旋体系具备成熟的系统理论和操控技术, 为量子控制方法的实用性研究提供了优秀的实验测试平台. 因此, 基于核磁共振的量子控制成为量子控制领域的重要方向. 本文简要介绍了量子控制的基本概念和方法; 从系统控制论的角度对核磁共振自旋体系的基本原理和重要控制任务做了阐述; 介绍了近些年来在该领域发展的相关控制方法及其应用; 对基于核磁共振体系的量子控制的进一步的研究做了几点展望.
    With the development of quantum information science, the active manipulation of quantum systems is becoming an important research frontier. To build realistic quantum information processors, one of the challenges is to implement arbitrary desired operations with high precision on quantum systems. A large number of quantum control methods and relevant numerical techniques have been put forward in recent years, such as quantum optimal control and quantum feedback control. Nuclear magnetic resonance (NMR) spin systems offer an excellent testbed to develop benchmark tools and techniques for controlling quantum systems. In this review paper, we briefly introduce some of the basic control ideas developed for NMR systems in recent years. We first explain, for the liquid spin systems, the physics of various couplings and the causes of relaxation effects. These mechanisms govern the system dynamics, and thus are crucial for constructing rigorous and efficient control models. We also identify three types of available control means: 1) raido-frequency fields as coherent controls; 2) phase cycling, gradient fields and relaxation effects as non-unitary controls; 3) radiation damping effect as feedback control mechanism. Then, we elucidate some important control tasks, which may arise from the conventional NMR spectroscopy (e.g., pulse design and polarization transfer) or from quantum information science (e.g., algorithmic cooling and pseudo-pure state preparation). In the last part, we review some of the most important control methods that are applicable to NMR control tasks. For systems with a relatively small number of spins, it is possible to use analytic optimal control theory to realize the target unitary operations. However, for larger systems, numerical methods are necessary. The gradient ascent pulse engineering algorithm and pulse compiler techniques are the most successful techniques for implementing complicated quantum networks currently. There are some interesting topics of utilizing radiation damping and relaxation effects to achieve more powerful controls. Finally, we give an outline of the possible future work.
      • 基金项目:国家重点基础研究发展规划(批准号: 2013CB921800, 2014CB848700)、国家杰出青年科学基金(批准号: 11425523)、国家自然科学基金 (批准号: 11375167, 11227901, 91021005)、中国科学院战略性先导科技专项(B)(批准号: XDB01030400)和高等学校博士学科点专项科研基金 (批准号: 20113402110044)资助的课题.
      • Funds:Project supported by the National Basic Research Program of China (Grant Nos. 2013CB921800, 2014CB848700), the National Natural Science Fund for Distinguished Young Scholars of China (Grant No. 11425523), the National Natural Science Foundation of China (Grant Nos. 11375167, 11227901, 91021005), the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB01030400), and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20113402110044).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      Stoustrup J, Schedletzky O, Glaser S J, Griesinger C, Nielsen N C, 1995 Phys. Rev. Lett. 74 2921

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      , Milburn G J 1993 Phys. Rev. Lett. 70 548

      [114]

      1994 Phys. Rev. A 49 2133

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      Stoustrup J, Schedletzky O, Glaser S J, Griesinger C, Nielsen N C, 1995 Phys. Rev. Lett. 74 2921

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      , Milburn G J 1993 Phys. Rev. Lett. 70 548

      [114]

      1994 Phys. Rev. A 49 2133

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

    • [1] 杨晓堃, 李维, 黄永畅.量子博弈—“PQ”问题. 必威体育下载 , 2024, 73(3): 030301.doi:10.7498/aps.73.20230592
      [2] 姜达, 余东洋, 郑沾, 曹晓超, 林强, 刘伍明.面向量子计算的拓扑超导体材料、物理和器件研究. 必威体育下载 , 2022, 71(16): 160302.doi:10.7498/aps.71.20220596
      [3] 王美红, 郝树宏, 秦忠忠, 苏晓龙.连续变量量子计算和量子纠错研究进展. 必威体育下载 , 2022, 71(16): 160305.doi:10.7498/aps.71.20220635
      [4] 王晨旭, 贺冉, 李睿睿, 陈炎, 房鼎, 崔金明, 黄运锋, 李传锋, 郭光灿.量子计算与量子模拟中离子阱结构研究进展. 必威体育下载 , 2022, 71(13): 133701.doi:10.7498/aps.71.20220224
      [5] 周宗权.量子存储式量子计算机与无噪声光子回波. 必威体育下载 , 2022, 71(7): 070305.doi:10.7498/aps.71.20212245
      [6] 王宁, 王保传, 郭国平.硅基半导体量子计算研究进展. 必威体育下载 , 2022, 71(23): 230301.doi:10.7498/aps.71.20221900
      [7] 李廷伟, 荣星, 杜江峰.固态单自旋量子控制研究进展. 必威体育下载 , 2022, 71(6): 060304.doi:10.7498/aps.71.20211808
      [8] 田宇, 林子栋, 王翔宇, 车良宇, 鲁大为.基于自旋体系的量子机器学习实验进展. 必威体育下载 , 2021, 70(14): 140305.doi:10.7498/aps.70.20210684
      [9] 张结印, 高飞, 张建军.硅和锗量子计算材料研究进展. 必威体育下载 , 2021, 70(21): 217802.doi:10.7498/aps.70.20211492
      [10] 张诗豪, 张向东, 李绿周.基于测量的量子计算研究进展. 必威体育下载 , 2021, 70(21): 210301.doi:10.7498/aps.70.20210923
      [11] 何映萍, 洪健松, 刘雄军.马约拉纳零能模的非阿贝尔统计及其在拓扑量子计算的应用. 必威体育下载 , 2020, 69(11): 110302.doi:10.7498/aps.69.20200812
      [12] 范桁.量子计算与量子模拟. 必威体育下载 , 2018, 67(12): 120301.doi:10.7498/aps.67.20180710
      [13] 孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁.核磁共振量子信息处理研究的新进展. 必威体育下载 , 2018, 67(22): 220301.doi:10.7498/aps.67.20180754
      [14] 潘健, 余琦, 彭新华.多量子比特核磁共振体系的实验操控技术. 必威体育下载 , 2017, 66(15): 150302.doi:10.7498/aps.66.150302
      [15] 李政, 周睿, 郑国庆.铁基超导体的量子临界行为. 必威体育下载 , 2015, 64(21): 217404.doi:10.7498/aps.64.217404
      [16] 李永放, 任立庆, 马瑞琼, 樊荣, 刘娟.利用相位可控光场实现量子态波函数时域演化的量子控制. 必威体育下载 , 2010, 59(3): 1671-1676.doi:10.7498/aps.59.1671
      [17] 姚淅伟, 曾碧榕, 刘钦, 牟晓阳, 林星程, 杨春, 潘健, 陈忠.基于核磁共振的子空间量子过程重构. 必威体育下载 , 2010, 59(10): 6837-6841.doi:10.7498/aps.59.6837
      [18] 李绍, 任育峰, 王宁, 田野, 储海峰, 黎松林, 陈莺飞, 李洁, 陈赓华, 郑东宁.利用高温超导直流量子干涉器件进行10-6 T量级磁场下核磁共振的研究. 必威体育下载 , 2009, 58(8): 5744-5749.doi:10.7498/aps.58.5744
      [19] 叶 宾, 须文波, 顾斌杰.量子Harper模型的量子计算鲁棒性与耗散退相干. 必威体育下载 , 2008, 57(2): 689-695.doi:10.7498/aps.57.689
      [20] 叶 宾, 谷瑞军, 须文波.周期驱动的Harper模型的量子计算鲁棒性与量子混沌. 必威体育下载 , 2007, 56(7): 3709-3718.doi:10.7498/aps.56.3709
    计量
    • 文章访问数:9339
    • PDF下载量:662
    • 被引次数:0
    出版历程
    • 收稿日期:2015-04-29
    • 修回日期:2015-06-12
    • 刊出日期:2015-08-05

      返回文章
      返回
        Baidu
        map