The terms of gain(or absorption), dispersion, and nonlinearity in the nonlinear Schrödinger equation are usually variables, which can be used to study the propagation of optical pulses in inhomogeneous optical fibers. In this paper, with the aid of the Hirota method, the bilinear forms of the Schrödinger equation are derived. Based on the bilinear form, the analytic dark soliton solutions to the nonlinear Schrödinger equation are obtained. The properties of dark solitons are discussed. Stable dark solitons are observed in the normal dispersion regime. In addition, corresponding parameters for controlling the propagation of dark solitons are analyzed. Results of our reflearch show that the propagation route of solitons can be effectively controlled by the gain(or absorption), dispersion, and nonlinearity, which can improve the quality of signal transmission in optical communications. When the amplitude of the loss coefficient increases, the amplitude of the dark soliton increases suddenly during the transmission process.By means of changing the type of dispersion, the purpose of controlling the dark soliton phase and phase oscillation is achieved. The possibly applicable soliton control techniques, which are used to design dispersion and nonlinearity-managed systems, are proposed. The proposed techniques may find applications in soliton management communication links, like soliton control.In addition, two-soliton solution is obtained. With the dark two-soliton solution, the interaction between two solitons is discussed in the paper. The result may be of potential application in the ultralarge capacity transmission systems.