-
为了克服共振干涉法在液体的热力学声速和高频声速测量方面精度不高的问题, 本文建立了一种基于自发布里渊散射原理的测定液体声速的实验装置. 利用法布里-珀罗干涉仪对散射光进行扫描滤波, 数据采集卡结合光子计数器对散射光进行探测, 设计了一种散射光信息采集分析方法. 该实验方法有效的解决了传统布里渊散射方法中信号失真的问题, 显著地提升了液体声速测量精度. 对308.6–906.2 MHz内298.15 K饱和液相CCl4声速进行了测量, 测量结果与文献值具有较好一致性. 利用法布里-珀罗干涉仪周期性扫描的滤波原理, 通过在测量得到的布里渊频移上加减整数倍个自由波谱区, 得到了更大频率的波谱信息, 进而设计一种测定介质高频声速的方法. 对CCl4在5406.1–5521.0 MHz频段内的声速进行了测量. 实验结果显示, CCl4的热力学声速随频率无明显变化, 而高频声速随频率的增大呈增大趋势且远大于热力学声速, 证实CCl4具有色散现象.In order to overcome the problem of poor accuracy of resonant interferometer method in the measurement of thermodynamic sound speed and hypersound speed of liquids an experimental setup for measuring the sound speed of liquids is established based on the principle of spontaneous Brillouin light scattering. A Fabry-Perot interferometer is used to filter the scattered light and a data acquisition card as well as a photon counting head is used to detect and analyze the scattered light, then a data acquisition and analysis method of scattered light is presented. This method overcomes the limitation of the signal distortion in conventional Brillouin light scattering and increases the measuring accuracy of the sound speed of liquids remarkably. The sound speed of saturated liquid CCl4 is measured in the frequency range of 308.6 to 906.2 MHz at 298.15 K. Results agree well with the data reported in the literature, and show that the experimental method is feasible. In addition, the method for measuring the ultrasonic speed is proposed by adding several free spectral ranges to the measured Brillouin frenquency-shift. The ultrasonic speed of CCl4 measured is in the frequency range of 5406.1–5521.0 MHz. It is shown that the thermodynamic sound speed does not change with the sound frequency, while the hypersound speed increases with the increase of sound frequency and it is much greater than the thermodynamic sound speed, which proves the dispersion phenomena of CCl4.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21]
计量
- 文章访问数:6312
- PDF下载量:514
- 被引次数:0