搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

陆坤权, 曹则贤, 厚美瑛, 姜泽辉, 沈容, 王强, 孙刚, 刘寄星

On the mechanism of earthquake

Lu Kun-Quan, Cao Ze-Xian, Hou Mei-Ying, Jiang Ze-Hui, Shen Rong, Wang Qiang, Sun Gang, Liu Ji-Xing
PDF
导出引用
  • 地震发生的物理机理和过程是还没有认识清楚的问题. 此前人们将浅源地震归因于弹性回跳,根据这一观点和岩石实验结果计算得到的地震能量与实际观测结果有很大矛盾,被称之为热流佯谬. 中源和深源地震发生在地幔区域,其成因也没有合理的解释. 考虑到地壳和地幔是离散集合态物质体系及其慢动力学运动行为的基本特点,本文根据物理学原理,特别是近年凝聚态物理发展出来的相关新观念,并依据已有观测事实,从新的视角探究地震发生的物理机制. 1) 关于地壳岩石层中的应力分布:在不考虑构造力时,依据万物皆流的流变学原理,原始地壳岩石在自重压强长时间作用下,纵向和横向应力相同,没有差应力. 大地构造力推动岩块滞滑移动挤压断层泥,施加于其他岩块,逐渐传递和积累. 这种附加的横向构造力与原始岩石中应力叠加,形成地壳岩石层中的实时应力. 由于断层泥属于颗粒物质体系,具有与岩石不同的力学特征,其弹性模量比岩石小得多,且随压强而增大,导致构造作用力随深度非线性增大. 给出了地壳中构造应力分布及其变化规律. 2) 关于地壳岩石层强度:地壳岩石的自重会使岩石发生弹性塑性转变. 通过对弹性塑性转变深度的计算,并根据实际情况分析,给出了地壳岩石弹性、部分塑性和完全塑性三个区域的典型深度范围. 在部分塑性区,塑性体比例达到约10%以上时,发生塑性连通,这时岩石剪切强度由塑性特征决定. 塑性滑移的等效摩擦系数比脆性破裂小一个数量级以上,致使塑性滑移时岩石剪切强度比脆性破裂小得多. 同时,随深度增大,有多种因素使得岩石剪切屈服强度减小. 另一方面,地震是大范围岩石破坏,破坏必然沿薄弱路径发生. 因此,浅源地震岩石的实际破坏强度必定比通常观测到的岩石剪切强度值低. 给出了地壳岩石平均强度和实际破坏强度典型值随深度的分布规律. 3) 关于地震发生的条件和机制:地震发生必定产生体积膨胀,只有突破阻挡才可膨胀. 地震发生的条件是:大地构造力超过岩石破坏强度、断层边界摩擦力以及所受阻挡力之和. 因此,浅源地震是岩石突破阻挡发生的塑性滑移. 在此基础上提出了浅源地震发生的四种可能模式. 深源地震是冲破阻挡发生的大范围岩块流. 浅源地震和深源地震都是堵塞解堵塞转变,是解堵塞后岩石层块滑移或流动造成的能量释放. 4) 关于地震能量和临震前兆信息:地震能量即为堵塞解堵塞转变过程释放的动能. 以实例估算表明,地震岩石滑移动能与使岩块剪切破坏和克服周围摩擦阻力所需做的功相一致,不会出现热流佯谬. 同时指出,通过观测地震发生前构造力的积累过程、局域地区地质变迁以及岩石状态变化等所产生的效应,均可能获得有价值的地震前兆信息.
    The physical mechanism of earthquake remains a challenging issue to be clarified. Seismologists used to attribute shallow earthquake to the elastic rebound of crustal rocks. The seismic energy calculated following the elastic rebound theory and on the basis of experimental results of rocks, however, shows a large discrepancy with measurementa fact that has been dubbed the heat flow paradox. For the intermediate-focus and deep-focus earthquakes, both occurring in the region of the mantle, there is not any reasonable explanation yet. The current article will discuss the physical mechanism of earthquake from a new perspective, starting from the fact that both the crust and the mantle are discrete collective systems of matters with slow dynamics, as well as from the basic principles of physics, especially some new concepts of condensed matter physics emerging in recent years. 1. Strss distribution in earth's crust: Without taking the tectonic force into account, according to the rheological principle that everything flows, the vertical and the horizontal strsses must be in balance due to the effect of gravitational pressure over a long period of time, thus no differential strss in the original crustal rocks is to be expected. The tectonic force is successively transferred and accumulated via stick-slip motions of rocky blocks to squeeze the fault gouges, and then applied to other rocky blocks. The superposition of such additional horizontal tectonic force and the original strss gives rise to the real-time strss in crustal rocks. The mechanical characteristics of fault gouge are different from rocks as it consists of granular matters. Thus the elastic modulus of the fault gouge is much lower than that of rocks, and will become larger with increasing pressure. This character of the fault gouge leads to a tectonic force that increases with depth in a nonlinear fashion. The distribution and variation of tectonic strss in the crust are then specified. 2. Strength of crust rocks: The gravitational pressure can initiate the transition from elasticity to plasticity in crust rocks. A method for calculating the depth dependence of elasticity-plasticity transition is formulated, and demonstrated by exemplar systems. According to the actual situation analysis the behaviors of crust rocks fall into three typical zones: elastic, partially plastic and fully plastic. As the proportion of plastic parts in the partially plastic zone reaches about 10%, plastic interconnection may occur and the variation of shear strength of rocks is mainly characterized by plastic behavior. The equivalent coefficient of friction for the plastic slip is smaller by an order of magnitude, or even less, than that for brittle fracture, thus the shear strength of the rocks for plastic sliding is much less than that for brittle breaking. Moreover, with increasing depth a number of other factors can further reduce the shear yield strength of rocks. On the other hand, since earthquake is a large-scale damage, the rock breaking must occur along a weakest path. Therefore, the actual fracture strength of rocks in a shallow earthquake is assuredly lower than the normally observed average shear strength of rocks. The typical distributions of averaged strength and actual fracture strength in crustal rocks varying with depth are schematically illustrated in the paper. 3. Conditions and mechanisms of earthquake: An earthquake will lead to large volume expansion, and the expansion must break through the obstacles. The condition for an earthquake to occur may be as follows: the tectonic force should exceed the sum of (a) the fracture strength of rocks, (b) the friction force of fault boundary, and (c) the resistance from obstacles. Therefore, the shallow earthquake is characterized by plastic sliding of rocks that break through the obstacles. Accordingly, four possible patterns for shallow earthquakes are put forward. Deep-focus earthquakes are believed to result from a wide-range rock flow that breaks the jam. Both shallow earthquakes and deep-focus earthquakes are the slip or flow of rocks following a jamming-unjamming transition. 4. Energetics and precursors of earthquake: The energy of earthquake is the kinetic energy released from the jamming-unjamming transition. Calculation shows that the kinetic energy of seismic rock sliding is comparable to the total work for rocks' shear failure and for overcoming the frictional resistance. There will be no heat flow paradox. More importantly, some valuable seismic precursors are likely to be identified by observing the accumulation of additional tectonic forces, local geological changes, as well as the effect of rock state changes, etc.
      • 基金项目:中国科学院知识创新工程项目(批准号:KJCX2-SW-W15,KKCX1-YW-03)、国家自然科学基金(批准号:10374111,11274354,11034010)和中国地震局地震行业科研专项经费项目(批准号:201208011) 资助的课题.
      • Funds:Project supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (Grant Nos. KJCX2-SW-W15, KKCX1-YW-03), the National Natural Science Foundation of China (Grant Nos. 10374111, 11274354, 11034010), and the Special Fundfor Earthquake Research from China Seismological Bureau (Grant No. 201208011).
      [1]

      [2]

      [3]
      [4]

      [5]
      [6]

      [7]
      [8]
      [9]

      [10]

      [11]
      [12]
      [13]

      [14]
      [15]

      [16]

      [17]
      [18]

      [19]
      [20]
      [21]

      [22]
      [23]

      [24]

      [25]
      [26]
      [27]

      [28]

      [29]
      [30]
      [31]

      [32]

      [33]
      [34]
      [35]

      [36]
      [37]

      [38]
      [39]

      [40]
      [41]

      [42]
      [43]

      [44]
      [45]

      [46]

      [47]
      [48]

      [49]
      [50]

      [51]
      [52]
      [53]

      [54]

      [55]
      [56]

      [57]
      [58]

      [59]
      [60]
      [61]

      [62]
      [63]

      [64]

      [65]
      [66]

      [67]
      [68]

      [69]
      [70]
      [71]

      [72]

      [73]
      [74]
      [75]

      [76]
      [77]

      [78]
      [79]

      [80]

      [81]
      [82]

      [83]
      [84]
      [85]

      [86]

      [87]
      [88]

      [89]
      [90]
      [91]

      [92]

      [93]
      [94]
      [95]

      [96]
      [97]

      [98]
      [99]

      [100]
      [101]

      [102]

      [103]
      [104]

      [105]
      [106]

      [107]
      [108]
      [109]

      [110]

      [111]
      [112]

      [113]
      [114]
      [115]

      [116]

      [117]
      [118]

      [119]
      [120]
      [121]

      [122]
      [123]

      [124]
      [125]

      [126]

      [127]
      [128]
      [129]

      [130]
      [131]

      [132]

      [133]
      [134]

      [135]
      [136]
      [137]

      [138]
      [139]

      [140]
      [141]

      [142]
      [143]

      [144]

      [145]
      [146]

      [147]
      [148]

      [149]
      [150]
      [151]

      [152]
      [153]

      [154]

      [155]
      [156]

      [157]
      [158]

      [159]
      [160]

      [161]
      [162]

      [163]
      [164]

      [165]
      [166]

      [167]
      [168]
      [169]

      [170]

      [171]
      [172]

      [173]
      [174]

      [175]
      [176]

      [177]
      [178]

      [179]
      [180]

      [181]
      [182]
      [183]

      [184]

      [185]
      [186]

      [187]
      [188]
      [189]

      [190]

      [191]
      [192]

      [193]
      [194]
      [195]

      [196]
      [197]

      [198]

      [199]
      [200]

      [201]
      [202]
      [203]

      [204]
      [205]

      [206]

      [207]
      [208]
      [209]

      [210]

      [211]
      [212]
      [213]

      [214]
      [215]

      [216]

      [217]
      [218]
      [219]

      [220]

      [221]
      [222]
      [223]

      [224]

      [225]
      [226]

      [227]
      [228]

      [229]
      [230]

      [231]
      [232]

      [233]
      [234]

      [235]
      [236]

      [237]
      [238]
      [239]

      [240]
      [241]

      [242]
      [243]

      [244]

      [245]
      [246]

      [247]
    • [1]

      [2]

      [3]
      [4]

      [5]
      [6]

      [7]
      [8]
      [9]

      [10]

      [11]
      [12]
      [13]

      [14]
      [15]

      [16]

      [17]
      [18]

      [19]
      [20]
      [21]

      [22]
      [23]

      [24]

      [25]
      [26]
      [27]

      [28]

      [29]
      [30]
      [31]

      [32]

      [33]
      [34]
      [35]

      [36]
      [37]

      [38]
      [39]

      [40]
      [41]

      [42]
      [43]

      [44]
      [45]

      [46]

      [47]
      [48]

      [49]
      [50]

      [51]
      [52]
      [53]

      [54]

      [55]
      [56]

      [57]
      [58]

      [59]
      [60]
      [61]

      [62]
      [63]

      [64]

      [65]
      [66]

      [67]
      [68]

      [69]
      [70]
      [71]

      [72]

      [73]
      [74]
      [75]

      [76]
      [77]

      [78]
      [79]

      [80]

      [81]
      [82]

      [83]
      [84]
      [85]

      [86]

      [87]
      [88]

      [89]
      [90]
      [91]

      [92]

      [93]
      [94]
      [95]

      [96]
      [97]

      [98]
      [99]

      [100]
      [101]

      [102]

      [103]
      [104]

      [105]
      [106]

      [107]
      [108]
      [109]

      [110]

      [111]
      [112]

      [113]
      [114]
      [115]

      [116]

      [117]
      [118]

      [119]
      [120]
      [121]

      [122]
      [123]

      [124]
      [125]

      [126]

      [127]
      [128]
      [129]

      [130]
      [131]

      [132]

      [133]
      [134]

      [135]
      [136]
      [137]

      [138]
      [139]

      [140]
      [141]

      [142]
      [143]

      [144]

      [145]
      [146]

      [147]
      [148]

      [149]
      [150]
      [151]

      [152]
      [153]

      [154]

      [155]
      [156]

      [157]
      [158]

      [159]
      [160]

      [161]
      [162]

      [163]
      [164]

      [165]
      [166]

      [167]
      [168]
      [169]

      [170]

      [171]
      [172]

      [173]
      [174]

      [175]
      [176]

      [177]
      [178]

      [179]
      [180]

      [181]
      [182]
      [183]

      [184]

      [185]
      [186]

      [187]
      [188]
      [189]

      [190]

      [191]
      [192]

      [193]
      [194]
      [195]

      [196]
      [197]

      [198]

      [199]
      [200]

      [201]
      [202]
      [203]

      [204]
      [205]

      [206]

      [207]
      [208]
      [209]

      [210]

      [211]
      [212]
      [213]

      [214]
      [215]

      [216]

      [217]
      [218]
      [219]

      [220]

      [221]
      [222]
      [223]

      [224]

      [225]
      [226]

      [227]
      [228]

      [229]
      [230]

      [231]
      [232]

      [233]
      [234]

      [235]
      [236]

      [237]
      [238]
      [239]

      [240]
      [241]

      [242]
      [243]

      [244]

      [245]
      [246]

      [247]
    • [1] 李伟健, 周晓艳, 陆杭军.无阀纳米泵中水流的反常堵塞. 必威体育下载 , 2024, 73(9): 094702.doi:10.7498/aps.73.20240115
      [2] 段亚娟, 乔吉超.Pd基非晶合金动态弛豫机制和应力松弛行为. 必威体育下载 , 2022, 71(8): 086101.doi:10.7498/aps.71.20212025
      [3] 郭春祥, 焦志宏, 周效信, 李鹏程.激光强度依赖的阈下谐波产生机制. 必威体育下载 , 2020, 69(7): 074203.doi:10.7498/aps.69.20191883
      [4] 刘晋, 缪波, 贾欣燕, 樊代和.基于Hardy-type佯谬的混合态高概率量子非局域关联检验. 必威体育下载 , 2019, 68(23): 230302.doi:10.7498/aps.68.20191125
      [5] 麻礼东, 杨光辉, 张晟, 林平, 田园, 杨磊.三维漏斗中颗粒物质堵塞问题的数值实验研究. 必威体育下载 , 2018, 67(4): 044501.doi:10.7498/aps.67.20171813
      [6] 冯雷, 蒋刚.氖原子对2000 eV X射线激光透明的产生机制. 必威体育下载 , 2017, 66(15): 153201.doi:10.7498/aps.66.153201
      [7] 张威, 胡林, 张兴刚.双分散颗粒体系在临界堵塞态的结构特征. 必威体育下载 , 2016, 65(2): 024502.doi:10.7498/aps.65.024502
      [8] 陆坤权, 厚美瑛, 姜泽辉, 王强, 孙刚, 刘寄星.以颗粒物理原理认识地震地震成因、地震前兆和地震预测. 必威体育下载 , 2012, 61(11): 119103.doi:10.7498/aps.61.119103
      [9] 韩海英, 那仁满都拉, 双山.具微结构地壳中非线性地震波的演化. 必威体育下载 , 2012, 61(5): 059101.doi:10.7498/aps.61.059101
      [10] 张国华, 孙其诚, 黄芳芳, 金峰.摩擦颗粒体系各向同性压缩过程中的堵塞行为. 必威体育下载 , 2011, 60(12): 124502.doi:10.7498/aps.60.124502
      [11] 田静, 邱海波, 陈勇.耦合哈密顿系统中测度同步发生机理的研究. 必威体育下载 , 2010, 59(6): 3763-3768.doi:10.7498/aps.59.3763
      [12] 何海伦, 刘永军, 莫军, 宋金宝.二维水槽中岩石坠落激发表面波的生成机制. 必威体育下载 , 2009, 58(10): 6743-6749.doi:10.7498/aps.58.6743
      [13] 邓敏艺, 施 娟, 李华兵, 孔令江, 刘慕仁.用晶格玻尔兹曼方法研究螺旋波的产生机制和演化行为. 必威体育下载 , 2007, 56(4): 2012-2017.doi:10.7498/aps.56.2012
      [14] 赵超樱, 谭维翰.在非简并参量放大系统中EPR佯谬的最佳实现. 必威体育下载 , 2006, 55(1): 19-23.doi:10.7498/aps.55.19
      [15] 顾培夫, 郑臻荣, 赵永江, 刘 旭.TiO2和SiO2薄膜应力的产生机理及实验探索. 必威体育下载 , 2006, 55(12): 6459-6463.doi:10.7498/aps.55.6459
      [16] 贾亚青, 闫培光, 吕可诚, 张铁群, 朱晓农.高非线性光子晶体光纤中飞秒脉冲的传输特性和超连续谱产生机制的实验研究及模拟分析. 必威体育下载 , 2006, 55(4): 1809-1814.doi:10.7498/aps.55.1809
      [17] 丁英涛, 何 枫, 姚朝晖, 沈孟育, 王学芳.长微直管内气体低速流动的亚堵塞现象. 必威体育下载 , 2004, 53(8): 2429-2433.doi:10.7498/aps.53.2429
      [18] 杜英磊, 吴柏枚.ZrO2涂层热性质的弧光光热分析技术和有限差分热流模型研究. 必威体育下载 , 1994, 43(11): 1821-1827.doi:10.7498/aps.43.1821
      [19] 魏成连, 董玉兰, 高之纬.Si{111}晶面粒子堵塞坑的新现象. 必威体育下载 , 1980, 29(9): 1222-1225.doi:10.7498/aps.29.1222
      [20] 陈昌, 魏成连, 董玉兰, 刘世杰, 夏广昌, 范景云, 王启良, 高之纬.Si,GaAs和LiNbO3单晶的堵塞效应. 必威体育下载 , 1979, 28(3): 324-333.doi:10.7498/aps.28.324
    计量
    • 文章访问数:8356
    • PDF下载量:941
    • 被引次数:0
    出版历程
    • 收稿日期:2014-09-01
    • 修回日期:2014-09-01
    • 刊出日期:2014-11-05

      返回文章
      返回
        Baidu
        map