-
为准确、有效地模拟非等温非牛顿黏性流体的流动问题,本文基于一种不含核导数计算的核梯度修正格式和不可压缩条件给出了一种改进光滑粒子动力学(SPH)离散格式,它较传统SPH离散格式具有较高精度和较好稳定性. 同时,为准确地描述温度场的演化过程,建立了非牛顿黏性的SPH温度离散模型. 通过对等温Poiseuille流、喷射流和非等温Couette流、4:1收缩流进行模拟,并与其他数值结果作对比,分别验证了改进SPH方法模拟非牛顿黏性流动问题的可靠性和提出的SPH温度离散模型求解非等温流动问题的有效性和准确性. 随后,运用改进SPH方法结合SPH温度离散模型对环形腔和C形腔内非等温非牛顿黏性流体的充模过程进行了试探性模拟研究,分析了数值模拟的收敛性,讨论了不同位置处热流参数对温度和流动的影响.In this paper, a corrected smoothed particle hydrodynamics (SPH) method is proposed to solve the problems of non-isothermal non-Newtonian viscous fluid. The proposed particle method is based on the corrected kernel derivative scheme under no kernel derivative and incompressible conditions, which possesses higher accuracy and better stability than the traditional SPH method. Meanwhile, a temperature-discretization scheme is deduced by the concept of SPH method for the purpose of precisely describing the evolutionary process of the temperature field. Reliability of the corrected SPH method for simulating the non-Newtonian viscous fluid flow is demonstrated by simulating the isothermal Poiseuille flow and the jet fluid of filling process; and the validity and accuracy of the proposed SPH discrete scheme in a temperature model for solving the non-isothermal fluid flow are tested by solving the non-isothermal Couette flow and 4:1 contraction flow. Subsequently, the proposed corrected SPH method combined with the SPH temperature-discretization scheme is tentatively extended to include the simulation of the non-isothermal non-Newtonian viscous free-surface flows in the ring-shaped and C-shaped cavities. Especially, the convergence of numerical simulations is analyzed, and the influences of heat flow parameters on the temperature and fluid flow at different positions are discussed.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30]
计量
- 文章访问数:5732
- PDF下载量:757
- 被引次数:0