Based on the surface plasmon primitives, subtractive color filters fabricated from ultrathin metallic film nanogratings, have many advantages, such as reliability, easy fabrication and high transmittance. In this work, color filter behaviors of films of four metals, i.e., silver, copper, aluminum and nickel, with one-dimensional nanogratings are systematically studied. We obtain their transmission spectra, the chromaticity coordinates and the empirical formulas of the relationship of the wavelength of transmission minimum with film thickness and period. It is found that nickel has a poor ability to select waves, which is not an ideal material for color filter. Silver, copper and aluminum perform better in selecting the wavelength. They have different transmission spectra, specifically, silver has a wide range of wavelength selection, copper is appropriate for the long wavelength filtering, and aluminum for short wavelength filtering. To verify the simulation results, we fabricate some one-dimensional nanogratings with different materials by using a direct-current magnetron sputtering system and focused ion beam machine. The experimentally observed colors for all fabricated Ag, Cu, and Al film nanogratings are consistent with their simulation results. Both simulation and experimental results reveal that different metal materials and different nanostructures exhibit lager differences in color filter behavior. The obtained results here are useful for designing desirable color filters by selecting the appropriate material and nanostructure.