-
本文研究. 首先用差分离散变分的方法,建立起离散变质量完整系统的运动方程和能量演化方程. 然后给出该系统的Noether对称性和Mei对称性的定义及离散Noether守恒量的形式. 得到系统的Noether对称性与Mei对称性导致离散Noether守恒量的条件. 最后举例说明结果的应用.
-
关键词:
- 差分离散变分/
- 变质量/
- Noether对称性/
- Mei对称性
This paper studies the Noether symmetry and Mei symmetry of a discrete holonomic mechanical system with variable mass. Firstly, by the difference discrete variation approach, the discrete equations of motion of the system are established. Secondly, the definitions of Noether symmetry and Mei symmetry are given, and the conditions under which the Noether conserved quantity can be induced by Noether symmetry and Mei symmetry are obtained. Finally, an example is discussed to illustrate these results.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59]
计量
- 文章访问数:5500
- PDF下载量:568
- 被引次数:0