Singularity spectrum analysis of sea clutter is the key technology of detecting radar for sea target, which can discover the dynamic mechanism of the sea surface theoretically. In this paper, based on wavelet leaders the time-varying singularity spectrum distribution of sea clutters is proposed, which introduces time information to the traditional singularity spectrum, and displays the time-varying characteristic of singularity spectrum analytically. In theory, by way of self-windowed fractal signal, we introduce the time information to the traditional singularity spectrum, and realize multifractal spectrum distribution of sea clutters. In algorithm, based on the wavelet leaders, we adapt the process of embodying chirp-type and cusp-type singularities, and obtain the time-varying singularity spectrum distribution of sea clutters by the Legendre transform of the time-varying scaling function. In practice, we analyze the classical multifractal modelrandom wavelet series and the real sea clutter data of continuous wave Doppler radar in level III sea state. Experiments indicate that (1) the time-varying singularity spectrum distribution based on wavelet leaders can trace the time-varying scale characteristic and display the time-varying singularity spectrum distribution of sea clutters; (2) the algorithm possesses good statistical convergence, low computational cost, and passive moment property. The time-varying singularity spectrum distribution based on wavelet leaders may serve as a reference sample for nonlinear dynamics and multifractal signal processing.