-
使用球谐展开的方法求解玻尔兹曼方程, 得到了弱电离大气等离子体(79%氮气和21%的氧气)的电子能量分布函数(EEDF). 发现当约化电场较小时(E/N 100 Td), EEDF在23 eV急剧下降, 在此情况下, 高能尾部比麦氏分布要小; 当约化电场增加, E/N 400 Td, 分布函数趋近于麦氏分布;当约化电场进一步增加, E/N 2000 Td, EEDF的高能尾部(超过200 eV)相对于麦氏分布增加.在高频场作用下, EEDF更倾向于麦氏分布.当 vm时, 有效电子温度只依赖于E/ , 而与碰撞频率无关; 当 vm 时, 有效电子温度只依赖于E/N, 与微波频率无关.与一些单原子分子等离子体中电子-电子碰撞在电离度大于10-6时就会影响EEDF不同, 空气等离子体中, 只有当电离度大于0.1%时, 电子-电子碰撞才会对EEDF有明显影响.The electron energy distribution function (EEDF) of weakly ionized air plasma (79% nitrogen and 21% oxygen) is investigated by solving the Boltzmann equation with the spherical harmonics expansion. It is found that the EEDF deceases sharply in an energy range from 2 to 3 eV for low reduced field (E/N 100 Td), and the high energy tail of the EEDF decreases more sharply than Maxwell distribution. When the reduced field increases to a range 400 to 2000 Td, the EEDF approaches to Maxwell distribution. When the reduced field is greater than 2000 Td, the high energy tail (200 eV) of the EEDF deceases more slowly than Maxwell distribution. It is shown that the EEDF approaches to Maxwell distribution in a high frequency field. The effective electron temperature is dependent only on E/ for vm, but on E/N for vm. The electron-electron collisions play no significant role until the ionization degree is bigger than 0.1%. This is different from the case of monatomic plasmas, in which the EEDF is influenced by electron-electron collisions for ionization degree greater than 10-6.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19]
计量
- 文章访问数:7866
- PDF下载量:1203
- 被引次数:0