-
基于超导传输线和超导量子比特相互耦合的电路量子电动力学 (quantum electrodynamics, QED)系统, 是研究固态量子信息和量子测量与控制的理想实验平台. 本文在已有工作(单比特电路QED)基础上, 进一步研究多比特电路QED系统. 具体通过对两比特系统的量子测量和量子控制动力学的模拟, 检验了"绝热消除"和"极化子变换"两种消除微腔光子自由度方法的适用条件. 和单比特情况不同, 我们特别检验了两比特系统Bell纠缠态的"确定性"制备问题. 在量子路径水平上模拟发现, 由于反馈操作引起量子比特状态翻转, 使得极化子变换方法失效,它所导出的"有效测量算符" (其中含有非平庸的"宇称项")此时也将变得没有意义.Solid-state superconducting circuit-quantum electrodynamics (QED) system is a promising candidate for quantum information processing and an ideal platform for quantum measurement and quantum control studies. As an extension to our previous simulation for single qubit circuit-QED, in this work we simulate the quantum measurement and control of multi-qubit system. Particularly, we consider the deterministic generation of a two-qubit Bell state. In this context we examine the validity conditions of two cavity-photon-elimination scheme. On the level of quantum trajectory simulation, we find that, owing to the qubit flip caused by feedback, the advanced polaron-transformation scheme is no longer applicable if the measurement is not weak, which also makes meaningless the elegant effective measurement operator.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23]
计量
- 文章访问数:7799
- PDF下载量:354
- 被引次数:0