In this paper, we study the property of thermal entanglement in four-qubit Heisenberg model, where Dzyaloshinskii-Moriya (DM) interaction is considered, and investigate the pairwise concurrences of two nearest-neighbor qubits and two next-neighbor qubits to study this entanglement property. The result shows that for the two-next-neighbor-qubit case, there exists pairwise concurrence neigher in ferromagnetic model nor in antiferromagnetic model; but for the two-nearest-neighbor-qubits case, the DM interaction and the parameter of the anisotropy exchange coupling have a significant influence on the pairwise entanglement and critical temperature Tc. Moreover, the pairwise concurrence will decrease with the increase of temperature. When the temperature execeds its critical value, the pairwise concurrence disappears. Therefore, the pairwise entanglement can be controlled and enhanced by choosing the appropriate parameters of the DM interaction and the anisotropy exchange coupling.