-
将滑动Kriging插值法与无网格局部Petrov-Galerkin法相结合,采用Heaviside分段函数作为局部弱形式的权函数,提出改进的无网格局部Petrov-Galerkin法,进一步将这种无网格法应用于位势问题,并推导相应的离散方程.因为滑动Kriging插值法构造的形函数满足Kronecker函数性质,所以本文建立的改进的无网格局部Petrov-Galerkin法可以像有限元法一样直接施加边界条件;由于采用Heaviside分段函数作为局部弱形式的权函数,因此在计算刚度矩阵时只涉及边界积分,而没有区域积分.此外,还对本方法中一些重要参数的选取进行了研究.数值算例表明,本文建立的改进的无网格局部Petrov-Galerkin法具有数值实现简单、计算量小以及方便施加边界条件等优点.
-
关键词:
- 无网格局部Petrov-Galerkin法/
- 滑动Kriging插值法/
- 无网格法/
- 位势问题
In this paper, combining the moving Kriging interpolation method and meshless local Petrov-Galerkin method, an improved meshless local Petrov-Galerkin method is presented, in which the Heaviside step function is used as test function over the local weak form. The present method is applied to two-dimensional potential problems and the corresponding discrete equations are derived. Because the shape functions so-obtained possess the Kronecker delta property, the essential boundary conditions can be enforced as the FEM; furthermore, the Heaviside step function is used as the test function, there is no domain integral, and only a regular boundary integral is involved. In this paper, the choice of the important parameters is studied. Numerical examples show that the present method has simpler numerical procedures and lower computation cost, in addition, the essential boundary conditions can be implemented directly.-
Keywords:
- meshless local Petrov-Galerkin method/
- moving Kriging interpolation method/
- Meshless method/
- potential problems
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30]
计量
- 文章访问数:9151
- PDF下载量:1460
- 被引次数:0