-
提出了一种新的类Quesne环状球谐振子势,应用二分量方法求解1/2-自旋粒子满足的Dirac方程, Dirac哈密顿量由标量和矢量类Quesne环状球谐振子势构成.在Σ=S(r)+V(r)=0的条件下,得到了Dirac旋量波函数下分量的束缚态解和能谱方程, 显示出.讨论了束缚态波函数和能谱方程的有关性质.
-
关键词:
- 类Quesne环状球谐振子势/
- Dirac方程/
- 赝自旋对称性/
- 束缚态
A Quesne-like ring-shaped spherical harmonic oscillator potential is put foword and studied for spin 1/2 particles based on the Dirac equation, the Dirac Hamiltonian contains a scalar and a vector Quesne-like ring-shaped harmonic oscillator potentials. Setting Σ=S(r)+V(r)=0,we obtain the bound state solutions and eigenenergies with the two-component approach. The result shows the pseudospin symmetry exists in the Quesne-like ring-shaped harmonic oscillator potential. The general properties of both the ring-shaped spherical harmonic oscillator potential and the ring-shaped non-spherical harmonic oscillator potential are discussed.-
Keywords:
- Quesne-like ring-shaped harmonic oscillator potential/
- Dirac equation/
- pseudospin symmetry/
- bound state
计量
- 文章访问数:7842
- PDF下载量:748
- 被引次数:0