The experimental investigation of the nonlinear hot image effect in brand-band pulsed laser beams is reported, placing emphasis on the observation of the formation of hot images and the influence of incident average power of pulse, pulse width, and thickness of the nonlinear medium on the location and intensity of hot images. It is shown that, hot images can be formed from obscurations in the broadband laser beam through a nonlinear Kerr medium slab, as in the case of the monochromatic continious light beam, and are located in the plane symmetrical to the obscuration with respect to the nonlinear slab. In addition, with the incident average power of pulse increasing, the intensity of hot image increases and ultimately reaches saturation, while with the pulse width increasing, the intensity of hot image decreases for a pulse of given energy. On the contrary, it increases for a pulse of given peak power.