-
采用扫描隧道显微镜(STM)在3-phenyl-1-ureidonitrile(PUN)有机单体薄膜上进行了超高密度信息存储的研究.通过在STM针尖和高定向裂解石墨(HOPG)衬底之间施加一系列的电压脉冲,在薄膜上写入了一个稳定的5×6信息点阵,信息点的大小是0.8nm.电流电压(I-V)曲线表明,施加电压脉冲前后薄膜的导电性质发生了变化.信息点的写入机制可能是强电场作用下引发的PUN分子的局域聚合,从而导致薄膜由高电阻态向低电阻态转变.
-
关键词:
- 超高密度信息存储/
- 有机薄膜/
- 扫描隧道显微镜(STM)
Ultrahigh-density data storage on a 3-phenyl-1-ureidonitrile (PUN) thin film was performed using a scanning tunneling microscope. The recorded marks of 0.8 nm in diameter were obtained when voltage pulses of 4 V for 10ms were applied between the STM tip and highly ordered pyrolytic graphite substrate. The current-voltage relations at the local regions of the films indicate that the recorded region is conductive and the unrecorded region is in a high impedance state. A possible mechanism of this data storage was suggested and discussed.
计量
- 文章访问数:7578
- PDF下载量:861
- 被引次数:0