搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

叶笑蓉, 曹佑安, 杨奇斌

ALGEBRAIC FOUNDATION OF MAXIMAL FINITE GROUP OF 3 DIMENTIONAL CRYATALLOGRAPHY

YE XIAO-RONG, CAO YOU-AN, YANG QI-BIN
PDF
导出引用
  • 从NTN=T这一晶体学的普遍公式出发,推导出在三维空间中度量张量矩阵T有四个算术不等价类,即公式见正文,而T1,T3,T4属几何等价类,故几何不等价类只有T1及T2.根据NT1 N=T1及NT2 N=T2求出三维晶体学的两个极大有限群分别为48阶及24阶,它们对应于两个晶体学点群,其他三十个点群则可通过母子群网
    Four arithmetic non-equivalent metric tensor matrices,-have been derived in this paper according to a crystallographic general equation TN=T.T1,T3 and T4 are geometric equivalent ones,therefore,only T1 and T2 are geometric non-equivalent ones.Substituting T1 and T2 into NTN=T,two maximal finite groups can be derived, which have 48 and 24 elements respectively and belong to two crystallographic point groups.The other 30 point groups can be derived according to group-subgroup relationship.
    计量
    • 文章访问数:6657
    • PDF下载量:523
    • 被引次数:0
    出版历程
    • 收稿日期:2000-09-12
    • 刊出日期:2001-03-05

      返回文章
      返回
        Baidu
        map