-
利用无中心的Virasoro型对称李代数[σ(f1(t)),σ(f2(t))] =σ(f1f2-f2f1)的每一个实现,能得到各种高维模型.通过一些特殊实现,给出了具有Virasoro型对称代数意义下的许多(3+1)维可积模型Using everyone of the realization of the centerless Virasoro type symmetry algebra, [σ(f1(t)),σ(f2(t))] =σ(f1f2-f2f1), we can get various higher dimensional models. By means of a concrete realization, many (3+1)-dimensional equations which possess Kac-Moody-Virasoro type infinite di-mensional symmetry algebra are obtained.
计量
- 文章访问数:6337
- PDF下载量:632
- 被引次数:0