-
本文基于PASSKEy(PArallel streamer solver with KinEtics)构建了一个多层介质球的二氧化碳填充式介质阻挡放电二维模型, 并对此模型的流注传播演化动态过程进行了深入系统的仿真研究. 研究指出第1层和第2层介质球的内侧不是二氧化碳解离等反应发生的主要区域, 主要区域为流注传播路径以及第1层介质球的外侧. 同时, 本文还对此模型的电子密度与电场的演化进行深入解析, 并给出了相应的物理机理和对应特征点的局部电场演化. 此外, 还分别研究了空间电荷和表面电荷的时空演化, 指出整体上空间中的负电荷随着流注的形成和传播, 不断收缩于流注内部和介质表面, 而正电荷主导放电空间的电荷分布. 并且通过展开特定介质球的表面, 给出了具体的分布角度范围和演变趋势. 最后研究了一氧化碳粒子和二氧化碳离子和氧气离子的时空演化机理, 并且对放电空间中所有的电子和二氧化碳离子的空间能量沉积进行积分, 数据表明在此模型中的总能量沉积值约为1.428 mJ/m, 二氧化碳离子的沉积能量约为0.1251 mJ/m, 占比达8.8%.The streamer propagation and electric field distribution in a two-dimensional fluid model of a packed bed reactor (PBR) filled with carbon dioxide are comprehensively studied by utilizing the PASSKEy simulation platform in this work. The spatiotemporal evolution of electron density, electric fields and key plasma species in the discharge process are studied in depth. The PBR with layered dielectric spheres is simulated by using the model, indicating that the inner sides of the first layer and the second layer of dielectric spheres are not the main regions for reactions such as CO2 dissociation; instead, the main regions are along the streamer propagation path and the outer side of the first layer of dielectric sphere. In this work, the propagation of streamers in an electric field is investigated, highlighting the influence of anode voltage rise and dielectric polarization on local electric field enhancement. This enhancement leads the electron density and temperature to increase, which facilitats streamer propagation and the formation of filamentary microdischarges and surface ionization waves. This work provides a detailed analysis of the local electric field evolution at specific points within the PBR, and a further investigation of the spatiotemporal dynamics of spatial and surface charges, revealing that negative charges concentrate in the streamer and on the dielectric surface, with density being significantly higher than that of positive charges. The positive charge distribution is closely related to the streamer path, and with time going by, the charge distribution becomes dominated in the discharge space. This work also explores the surface charge deposition on the dielectric spheres, and discusses the evolution trend of the distribution. Additionally, this work discusses the temporal and spatial evolution of key plasma species, including ions and radicals, and their contributions to the overall discharge characteristics. The production mechanisms of carbon monoxide particles, carbon dioxide ions, and oxygen ions are analyzed, with a focus on their spatial distribution and correlation with electron density. Finally, the energy deposition within the PBR is examined by integrating the spatial energy deposition of electrons and major positive ions. The results indicate a total energy deposition value of approximately 1.428 mJ/m, with carbon dioxide ions accounting for 8.8% of this value.
-
Keywords:
- packed-bed dielectric barrier discharge /
- dissociation of carbon dioxide /
- numerical simulation of plasma /
- reaction mechanism
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] -
n An/(cm–2·torr–1) λn /(cm–1·torr–1) 1 3.74×10–5 2.31 2 4.35×10–6 0.837 3 1.55×10–4 7.79 分子 CO2, CO, O2 离子 ${\mathrm{CO}}_2^+ $, CO+, C+, O+, ${\mathrm{O}}_2^+ $, O–, ${\mathrm{O}}_2^- $ 自由基 O, C 类型 反应 焓变/eV 反应速率 电离 e + CO2$ \Rightarrow$${\mathrm{CO}}_2^+ $ + e + e –13.80 BOLSIG+ 电离 e + CO2$ \Rightarrow$CO + O+ + e + e –19.1 BOLSIG+ 电离 e + CO2$ \Rightarrow$O + CO+ + e + e –19.5 BOLSIG+ 电离 e + CO2$ \Rightarrow$O2+C+ + e + e –27.8 BOLSIG+ 电离 e + CO$ \Rightarrow$CO+ + e + e –14.01 BOLSIG+ 电离 e + CO$ \Rightarrow$C++O + e + e –22.0 BOLSIG+ 电离 e + CO$ \Rightarrow$C + O+ + e + e –25.0 BOLSIG+ 电离 e + O2$ \Rightarrow$${\mathrm{O}}_2^+ $ + e + e –12.06 BOLSIG+ 解离 e + O2$ \Rightarrow$e + O + O 0.8 BOLSIG+ 解离 e + CO2$ \Rightarrow$e + CO + O –7.0 BOLSIG+ 吸附 e + O2 + O2$ \Rightarrow$${\mathrm{O}}_2^- $+O2 0 6.0 × 10–39$ T_{\text{e}}^{{{ - 1}}} $b* 吸附 e + O2 + CO2$ \Rightarrow$CO2 + ${\mathrm{O}}_2^- $ 1.60 3.0 × 10–42 b* 吸附 e + O + CO2$ \Rightarrow$CO2 + O– 1.60 1.0 × 10–43 b* 解离+吸附 e + CO2$ \Rightarrow$CO + O– 0 BOLSIG+ 解离+吸附 e + CO$ \Rightarrow$C + O– 0 BOLSIG+ 解离+吸附 e + O2$ \Rightarrow$O–+O 0 BOLSIG+ e-i 复合 e + ${\mathrm{CO}}_2^+ $$ \Rightarrow$CO + O 1.60 $2.0 \times 10^{-11} T_{\text{e}}^{{{ - 0}}{.5}} \cdot T_{\text{g}}^{ - 1} $a* e-i 复合 e + ${\mathrm{CO}}_2^+ $$ \Rightarrow$C + O 1.60 $3.68 \times 10^{-14} T_{\text{e}}^{-0.55} $a* e-i 复合 e + ${\mathrm{CO}}_2^+ $$ \Rightarrow$C + O2 1.60 $3.94 \times 10^{-13} T_{\text{e}}^{-0.4} $a* e-i 复合 e + ${\mathrm{O}}_2^+ $$ \Rightarrow$O + O 1.60 $6.0 \times 10^{-13} T_{\text{e}}^{{{ - 0}}{.5}} \cdot T_{\text{g}}^{ - 0.5} $a* e-i 复合 e + O2+ + CO2$ \Rightarrow$O2 + CO2 1.60 1.0 × 10–38 b* e-i 复合 e + O+ + CO2$ \Rightarrow$O + CO2 1.60 1.0 × 10–38 b* 注: a*代表单位为m3/(mol·s), b*代表单位为m6/(mol2·s). 类型 反应 焓变/eV 反应速率 电子分离 O– + O$ \Rightarrow$O2+e 0 1.4 × 10–16 a* 电子分离 ${\mathrm{O}}_2^- $ + O$ \Rightarrow$O2 + O + e 0 1.5 × 10–16 a* i-i复合 ${\mathrm{O}}_2^- $+${\mathrm{O}}_2^+ $ + O2$ \Rightarrow$O2 + O2 + O2 7.0 2.0 × 10–37 b* 电荷转移 O+ + CO2$ \Rightarrow$${\mathrm{O}}_2^+ $ + CO 0 9.4 × 10–16 a* 电荷转移 O+ + CO2$ \Rightarrow$${\mathrm{CO}}_2^+ $ + O 0 4.5 × 10–16 a* 电荷转移 CO+ + CO2$ \Rightarrow$${\mathrm{CO}}_2^+ $ + CO 0 1.0 × 10–15 a* 电荷转移 C+ + CO$ \Rightarrow$CO+ + C 0 5.0 × 10–19 a* 电荷转移 ${\mathrm{O}}_2^+ $ + C$ \Rightarrow$CO+ + O 0 5.2 × 10–17 a* 电荷转移 ${\mathrm{CO}}_2^+ $ + O2$ \Rightarrow$CO2 + ${\mathrm{O}}_2^+ $ 0 5.3 × 10–17 a* 电荷转移 ${\mathrm{CO}}_2^+ $ + O$ \Rightarrow$CO+${\mathrm{O}}_2^+ $ 0 1.64 × 10–16 a* 电荷转移 ${\mathrm{CO}}_2^+ $ + O$ \Rightarrow$CO2 + O+ 0 9.62 × 10–17 a* 电荷转移 CO+ + O$ \Rightarrow$CO + O+ 0 1.4 × 10–16 a* 电荷转移 CO+ + O2$ \Rightarrow$CO + ${\mathrm{O}}_2^+ $ 0 1.2 × 10–16 a* 中性反应 CO2 + CO2$ \Rightarrow$CO + O + CO2 0.60 $3.91 \times 10^{-16} \exp [-(49430/T_{\rm g})]$ a* 中性反应 CO2 + O$ \Rightarrow$CO + O2 0 $2.8 \times 10^{-17} \exp [-(26500/T_{\rm g})] $ a* 中性反应 CO2 + C$ \Rightarrow$CO + CO 0 $1.0 \times 10^{-21}$ a* 中性反应 CO + O + CO2$ \Rightarrow$CO2 + CO2 0 $8.2 \times 10^{-46} \exp [-(1510/T_{\rm g})] $ b* 中性反应 O2 + CO$ \Rightarrow$CO2 + O 0 $4.2 \times 10^{-18} \exp [-(24000/T_{\rm g})] $ a* 中性反应 O2 + C$ \Rightarrow$CO + O 0 $3.0 \times 10^{-17} $ a* 中性反应 O + C + CO2$ \Rightarrow$CO + CO2 0 $9.12 \times 10^{-37}T_{\rm g}^{-3.08} \exp [-(2114/T_{\rm g})] $ b* 中性反应 O + O + CO2$ \Rightarrow$O2 + CO2 0 $3.81 \times 10^{-42}T_{\rm g}^{-1} \exp [-(170/T_{\rm g})] $ b* 注: a*代表单位为m3/(mol·s), b*代表单位为m6/(mol2·s). -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44]
计量
- 文章访问数: 386
- PDF下载量: 24
- 被引次数: 0