In recent years, the rapid development of ultrashort pulse laser technology has made it possible to regulate the ionization and dissociation dynamics of atoms and molecules. Among them, the microscopic dynamics of molecular dissociation have always been a hot topic. The phenomenon of molecular dissociation caused by the interaction between femtosecond intense laser fields and H
2
+molecules has attracted widespread attention. Previous theoretical studies on the dissociation of H
2
+molecules mainly focused on studying its dissociation dynamics through numerical calculations, while there were relatively few theoretical models. This paper aims to establish a simple classical model to describe the dissociation dynamics. Firstly, this paper calculates the joint distribution of nuclear and electronic energies during the dissociation process of H
2
+molecules under the action of pump lasers by numerically solving the Schrödinger equation, and proves that H
2
+molecules initially in the ground state dissociate into H
++ H
*after absorbing a pump photon in the pump light field. Next, this paper studies the dissociation dynamics of H
2
+molecules in time-delayed two-color femtosecond lasers and finds that it closely depends on the specific forms of the pump light and the probe light. By utilizing the dependence of the dissociation kinetic energy release (KER) spectrum on the time delay of the two-color femtosecond lasers, we have retrieved the sub-attosecond microscopic dynamic behaviors of electrons and atomic nuclei during the dissociation process, and established a classical model based on the conservation of energy and momentum to describe the dissociation dynamics. This model can qualitatively predict the ion dissociation KER spectrum depending on the time delay of the two-color femtosecond lasers. In addition, by taking advantage of the dependence of the ion kinetic energy spectrum on the frequency of the probe laser (that is, the electronic resonant transition between the molecular ground state and the first excited state caused by the probe light will affect the ion kinetic energy spectrum during the dissociation process), we propose a scheme to reconstruct the evolution of the internuclear distance over time. Our reconstruction results can qualitatively predict the trend of the numerical simulation results, and this scheme may provide some theoretical guidance for experiments.