搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

邓祥文, 伍力源, 赵锐, 王嘉鸥, 赵丽娜

Application and Prospect of Machine Learning in Photoelectron Spectroscopy

Deng Xiang-Wen, Wu Li-Yuan, Zhao Rui, Wang Jia-Ou, Zhao Li-Na
PDF
导出引用
  • 光电子能谱是一项在物质科学中被广泛应用的表征技术.尤其是角分辨光电子能谱(ARPES),可以直接给出材料体系内电子的能量-动量色散关系和费米面结构,是研究多体相互作用和关联量子材料的利器.随着先进ARPES如时间分辨ARPES,Nano-ARPES等技术的不断发展,以及同步辐射装置的更新换代,将会产生越来越多的高通量实验数据.因此,探索准确,高效,同时能挖掘深层物理信息的数据处理方法变得愈发迫切.由于机器学习天然具有的自动化处理复杂高维数据能力,推动了包括ARPES在内的诸多领域的变革和技术创新.本文综述了机器学习在光电子能谱中的应用,包括对光谱数据进行降噪,进行电子结构分析,化学组成分析,以及结合理论计算获得的电子结构信息进行光谱预测.进一步,展望了更多机器学习算法在光电子能谱中的应用,最终有望形成更加自动化的数据采集、预处理系统以及数据分析的工作流,推动光电子能谱技术的发展,从而推进量子材料和凝聚态物理前沿研究.
    Photoelectron spectroscopy serves as a prevalent characterization technique within the realm of material science. Specifically, angle-resolved photoelectron spectroscopy (ARPES) provides a direct method for determining the energy-momentum dispersion relationship and Fermi surface structure of electrons within a material system. This makes ARPES a potent tool for the investigation of many-body interactions and correlated quantum materials. The field of photoelectron spectroscopy has seen continuous advancements, with the emergence of technologies such as time-resolved ARPES and nano-ARPES. Concurrently, the evolution of synchrotron radiation devices has led to the generation of an increasing volume of high throughput and high dimension experimental data. This underscores the growing urgency for the development of more efficient and precise data processing methods, as well as the extraction of deeper physical information. In light of these developments, machine learning is poised to play an increasingly significant role across various fields, including but not limited to ARPES. This paper reviews the application of machine learning in photoelectron spectroscopy, which primarily encompasses three aspects:
    1.Data Denoising: Machine learning can be utilized for denoising photoelectron spectroscopy data. The denoising process via machine learning algorithms can be bifurcated into two methods. Both of the two methods do not need for manual data annotation. The first approach involves the use of noise generation algorithms to simulate experimental noise, thereby obtaining effective low signal-to-noise ratio to high signal-to-noise ratio data pairs. Alternatively, the second approach can be employed to extract noise and clean spectral data, respectively.
    2.Electronic Structure and Chemical Composition Analysis: Machine learning can be applied for the analysis of electronic structure and chemical composition. (Angle-resolved) photoelectron spectroscopy contains abundant information about material structure. Information such as energy band structure, self-energy, binding energy, and other condensed matter data can be rapidly acquired through machine learning schemes.
    3.Prediction of Photoelectron Spectroscopy: the electronic structure information obtained by combining first-principles calculation can also predict the photoelectron spectroscopy. The rapid acquisition of photoelectron spectroscopy data through machine learning algorithms also holds significance for material design. Photoelectron spectroscopy holds significant importance in the study of condensed matter physics. In the context of synchrotron radiation development, the construction of an automated data acquisition and analysis system could play a pivotal role in condensed matter physics research. In addition, adding more physical constraints to the machine learning model will improve the interpretability and accuracy of the model. There exists a close relationship between photoelectron spectroscopy and first-principles calculations with respect to electronic structure properties. The integration of these two through machine learning is anticipated to significantly contribute to the study of electronic structure properties. Furthermore, as machine learning algorithms continue to evolve, the application of more advanced machine learning algorithms in photoelectron spectroscopy research is expected. By building automated data acquisition and analysis systems, designing comprehensive workflows based on machine learning and first-principles methods, and integrating new machine learning techniques, it will help accelerate the progress of photoelectron spectroscopy experiments and facilitate the analysis of electronic structure properties and microscopic physical mechanisms, which will advance the frontier research in quantum materials and condensed matter physics.
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

    • [1] 张嘉晖.蛋白质计算中的机器学习. 必威体育下载 ,doi:10.7498/aps.73.20231618
      [2] 杨章章, 刘丽, 万致涛, 付佳, 樊群超, 谢锋, 张燚, 马杰.结合机器学习算法提高从头算方法对HF/HBr/H35Cl/Na35Cl振动能谱的预测性能. 必威体育下载 ,doi:10.7498/aps.72.20221953
      [3] 黎威, 龙连春, 刘静毅, 杨洋.基于机器学习的无机磁性材料磁性基态分类与磁矩预测. 必威体育下载 ,doi:10.7498/aps.71.20211625
      [4] 王恩, 董文翰, 周辉, 刘猛, 纪洪艳, 孟胜, 孙家涛.周期场驱动下量子材料的非平衡物态. 必威体育下载 ,doi:10.7498/aps.70.20201808
      [5] 林键, 叶梦, 朱家纬, 李晓鹏.机器学习辅助绝热量子算法设计. 必威体育下载 ,doi:10.7498/aps.70.20210831
      [6] 邓韬, 杨海峰, 张敬, 李一苇, 杨乐仙, 柳仲楷, 陈宇林.拓扑半金属材料角分辨光电子能谱研究进展. 必威体育下载 ,doi:10.7498/aps.68.20191544
      [7] 冯小静, 郭玮, 路兴强, 姚洪斌, 李月华.三态K2分子飞秒含时光电子能谱的理论研究. 必威体育下载 ,doi:10.7498/aps.64.143303
      [8] 张敏, 唐田田, 张朝民.NaLi分子飞秒含时光电子能谱的理论研究. 必威体育下载 ,doi:10.7498/aps.63.023302
      [9] 李一丁, 张鹏飞, 张辉, 徐宏亮.电子磁矩对同步辐射频谱的修正. 必威体育下载 ,doi:10.7498/aps.62.094103
      [10] 张强, 户田裕之.同步辐射K边减影成像及其在多孔金属材料中的应用. 必威体育下载 ,doi:10.7498/aps.60.114103
      [11] 吴海飞, 张寒洁, 廖清, 陆赟豪, 斯剑霄, 李海洋, 鲍世宁, 吴惠祯, 何丕模.Mn/PbTe(111)界面行为的光电子能谱研究. 必威体育下载 ,doi:10.7498/aps.58.1310
      [12] 张文华, 莫 雄, 王国栋, 王立武, 徐法强, 潘海斌, 施敏敏, 陈红征, 汪 茫.苯并咪唑苝与金属Ag的界面电子结构研究. 必威体育下载 ,doi:10.7498/aps.56.4936
      [13] 易荣清, 杨国洪, 崔延莉, 杜华冰, 韦敏习, 董建军, 赵屹东, 崔明启, 郑 雷.北京同步辐射3B3中能束线X射线探测系统性能研究. 必威体育下载 ,doi:10.7498/aps.55.6287
      [14] 袁勇波, 刘玉真, 邓开明, 杨金龙.SiN团簇光电子能谱的指认. 必威体育下载 ,doi:10.7498/aps.55.4496
      [15] 黄超群, 卫立夏, 杨 斌, 杨 锐, 王思胜, 单晓斌, 齐 飞, 张允武, 盛六四, 郝立庆, 周士康, 王振亚.HFC-152a的同步辐射真空紫外光电离和光解离研究. 必威体育下载 ,doi:10.7498/aps.55.1083
      [16] 王思胜, 孔蕊弘, 田振玉, 单晓斌, 张允武, 盛六四, 王振亚, 郝立庆, 周士康.Ar?NO团簇的同步辐射光电离研究. 必威体育下载 ,doi:10.7498/aps.55.3433
      [17] 葛愉成.用光电子能谱相位确定法同时测量阿秒超紫外线XUV脉冲的频率和强度时间分布. 必威体育下载 ,doi:10.7498/aps.54.2653
      [18] 邹崇文, 孙 柏, 王国栋, 张文华, 徐彭寿, 潘海斌, 徐法强, 尹志军, 邱 凯.低覆盖度的Au/GaN(0001)界面的同步辐射研究. 必威体育下载 ,doi:10.7498/aps.54.3793
      [19] 崔大复, 王焕华, 戴守愚, 周岳亮, 陈正豪, 杨国桢, 刘凤琴, 奎热西, 钱海杰.Sb掺杂SrTio3透明导电薄膜的光电子能谱研究. 必威体育下载 ,doi:10.7498/aps.51.187
      [20] 吕斌, 吕萍, 施申蕾, 张建华, 唐建新, 楼辉, 何丕模, 鲍世宁.OPCOT在Ru(0001)表面上的紫外光电子能谱研究. 必威体育下载 ,doi:10.7498/aps.51.2644
    计量
    • 文章访问数:17
    • PDF下载量:1
    • 被引次数:0
    出版历程
    • 上网日期:2024-09-26

      返回文章
      返回
        Baidu
        map