\begin{document}$ \approx $\end{document}10–7\begin{document}$ {\lambda }_{0}^{3} $\end{document}, λ0 = 6.25 μm)和约50倍电场增强的n-AGP激发. 通过调控金纳米腔室结构和石墨烯费米能级, 我们实现了n-AGP的宽频段动态调控(1290—2124 cm–1). 此外, 由于n-AGP的电磁场高度局域在纳米腔室内, 具有高的探测灵敏度, 可实现单个蛋白质颗粒酰胺I带和酰胺II带振动指纹特征的探测 (灵敏度提高约9倍). 这一基于n-AGP的增强结构拓展了nano-IR技术在单分子尺度的表征能力, 可广泛应用于生物、催化等领域."> - 必威体育下载

搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    段谕, 戴小康, 吴晨晨, 杨晓霞

    Tunable acoustic graphene plasmon enhanced nano-infrared spectroscopy

    Duan Yu, Dai Xiao-Kang, Wu Chen-Chen, Yang Xiao-Xia
    PDF
    HTML
    导出引用
    • 纳米红外光谱 (nano-infrared spectroscopy, nano-IR) 技术能够突破光的衍射极限, 实现约10 nm空间分辨率的红外光谱检测, 是研究纳米尺度物质化学成分和结构的重要技术手段. 然而, 由于纳米物质的尺寸与红外光的波长存在较大失配, 导致其红外吸收信号微弱. 本文理论提出了一种基于纳米腔室的声学型石墨烯等离激元 (nanocavity-acoustic graphene plasmon, n-AGP) 可调谐增强nano-IR检测平台. 该平台可实现超高光场压缩 (模式体积 V n-AGP $ \approx $ 10 –7 $ {\lambda }_{0}^{3} $ , λ 0= 6.25 μm)和约50倍电场增强的n-AGP激发. 通过调控金纳米腔室结构和石墨烯费米能级, 我们实现了n-AGP的宽频段动态调控(1290—2124 cm –1). 此外, 由于n-AGP的电磁场高度局域在纳米腔室内, 具有高的探测灵敏度, 可实现单个蛋白质颗粒酰胺I带和酰胺II带振动指纹特征的探测 (灵敏度提高约9倍). 这一基于n-AGP的增强结构拓展了nano-IR技术在单分子尺度的表征能力, 可广泛应用于生物、催化等领域.
      Nano-infrared spectroscopy (nano-IR) technology can exceed the diffraction limit of light, achieving infrared spectroscopic detection with a spatial resolution of about 10 nm, which is an important technical means for studying the chemical composition and structure of molecules on a nanoscale. However, the weak infrared absorption signals of nanoscale materials pose a significant challenge due to the large mismatch between their dimensions and the wavelength of infrared light. The infrared absorption signals of molecular vibrational modes are proportional to the squares of the electromagnetic field intensities at their positions, implying that higher electromagnetic field intensity can significantly improve the sensitivity of molecular detection. Acoustic graphene plasmons (AGPs), excited by the interaction between free charges in graphene and image charges in metal, exhibit strong optical field localization and electromagnetic field enhancement. These properties make AGPs an effective platform for enhancing nano-IR detection sensitivity. However, the fabrication of graphene nanostructures often introduces numerous edge defects due to the limitations of nanofabrication techniques, significantly reducing the electromagnetic field enhancement observed in experiments. Here, we use finite element simulation to theoretically propose a tunable enhanced nano-IR detection platform based on nanocavity-acoustic graphene plasmons (n-AGPs), which utilizes a graphene/air gap/gold nanocavity structure. This platform avoids needing the nanofabrication of graphene, thereby preventing defects and contamination from being introduced in processes such as electron beam exposure and plasma etching. By plotting the dispersion of n-AGP, it is found that n-AGP has a high wavelength compression capability comparable to AGP ( λ 0/ λ AGP= 48). Additionally, due to the introduction of the gold nanocavity structure, n-AGP possess an extremely small mode volume ( V n-AGP≈ 10 –7 $ {{ \lambda }}_{0}^{3} $ , λ 0= 6.25 μm). By calculating the electric field intensity distribution (| E norm|) and the normalized electric field intensity spectrum (i.e. the relationship between frequency and | E z|/| E z0|) of the n-AGP structure, it is evident that due to the high electron density on the gold surface, electromagnetic waves can be reflected from the boundaries of the gold nanocavity and resonantly enhanced within the nanocavity. At the resonant frequency of n-AGP (1800 cm –1), the electric field inside the cavity is enhanced by about 50 times. In contrast, at similar resonant frequencies, the electric field enhancement factor of Graphene plasmon (resonant frequency 1770 cm –1) and AGP (resonant frequency 1843 cm –1) are approximately 3 and 2 times, respectively, significantly lower than that of n-AGP. Furthermore, by placing a protein film (60 nm wide and 10 nm high) under the graphene, we calculate the spectral dip depths caused by Fano resonance between n-AGP and AGP with the vibrational modes of protein molecules, thereby validating the enhancement factors of different modes for protein vibrational mode infrared absorption. For the amide-I band of proteins, the detection sensitivity of n-AGP is about 60 times higher than that of AGP. Additionally, we find that by adjusting the structural parameters of the gold nanocavity, including cavity depth, width, and surface roughness, the response frequency band of n-AGP can be modulated (from 1290 to 2124 cm –1). Specifically, as the cavity depth increases, the electric field enhancement of n-AGP is improved, and the wavelength compression capability of n-AGP decreases, causing the resonant frequency to be blue-shifted (from 1793 to 2124 cm –1). As the cavity width increases, the resonant frequency of n-AGP is red-shifted (from 1793 to 1290 cm –1), and the effectiveness of the gold nanocavity boundary in reflecting the resonant electric field within the cavity diminishes, resulting in a decrease in the electric field enhancement factor. With the gradual increase in the roughness of the gold nanocavity bottom, the effective depth of the gold nanocavity increases, causing the n-AGP resonant frequency to be blue-shifted (from 1793 to 1861 cm –1) and the electric field enhancement factor to increase. Moreover, by adjusting the Fermi level of graphene (from 0.3 to 0.6 eV), we achieve dynamic tuning of n-AGP (from 1355 to 1973 cm –1). As the Fermi level of graphene increases, the wavelength compression capability of n-AGP decreases, resulting in a blue-shift in the resonant frequency. Finally, by optimizing the structural parameters and Fermi level of n-AGP, and placing protein particles of different sizes (20, 15, and 10 nm high, all 10 nm wide) into the graphene/gold nanocavity structure, we verify the protein detection capability of n-AGP-enhanced nano-IR. We find that n-AGP can detect the vibrational fingerprint features of the amide-I band and amide-II band. For protein films (60 nm wide and 10 nm high), the sensitivity increased by approximately 300 times, and for a single protein particle (10 nm wide and 10 nm high), the sensitivity increased by approximately 9 times. This enhanced structure based on n-AGP holds promise for providing an important detection platform for nanoscale material characterization and single-molecule detection, with broad application potential in biomedicine, materials science, and geology.
          通信作者:吴晨晨,wucc@nanoctr.cn; 杨晓霞,yangxx@nanoctr.cn
        • 基金项目:国家重点研发计划(批准号: 2023YFA1407003)、国家自然科学基金(批准号: 52022025, 51972074)、中国科学院青年团队计划(批准号: YSBR-086)和中国科学院青年创新促进会资助的课题.
          Corresponding author:Wu Chen-Chen,wucc@nanoctr.cn; Yang Xiao-Xia,yangxx@nanoctr.cn
        • Funds:Project supported by the National Key Research and Development Program of China (Grant No. 2023YFA1407003), the National Natural Science Foundation of China (Grant Nos. 52022025, 51972074), the Chinese Academy of Sciences Project for Young Scientists in Basic Research (Grant No. YSBR-086), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences, China.
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

        [45]

        [46]

        [47]

        [48]

        [49]

        [50]

        [51]

        [52]

        [53]

        [54]

        [55]

        [56]

        [57]

        [58]

        [59]

        [60]

        [61]

        [62]

        [63]

        [64]

      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

        [45]

        [46]

        [47]

        [48]

        [49]

        [50]

        [51]

        [52]

        [53]

        [54]

        [55]

        [56]

        [57]

        [58]

        [59]

        [60]

        [61]

        [62]

        [63]

        [64]

      • [1] 杨肖杰, 许辉, 徐海烨, 李铭, 于鸿飞, 成昱轩, 侯海良, 陈智全.基于石墨烯等离激元太赫兹结构的传感及慢光应用. 必威体育下载 , 2024, 73(15): 157802.doi:10.7498/aps.73.20240668
        [2] 张逸飞, 刘媛, 梅家栋, 王军转, 王肖沐, 施毅.基于纳米金属阵列天线的石墨烯/硅近红外探测器. 必威体育下载 , 2024, 73(6): 064202.doi:10.7498/aps.73.20231657
        [3] 王伟华.二维有限元方法研究石墨烯环中磁等离激元. 必威体育下载 , 2023, 72(8): 087301.doi:10.7498/aps.72.20222467
        [4] 沈艳丽, 史冰融, 吕浩, 张帅一, 王霞.基于石墨烯的Au纳米颗粒增强染料随机激光. 必威体育下载 , 2022, 71(3): 034206.doi:10.7498/aps.71.20211613
        [5] 郭晓蒙, 青芳竹, 李雪松.石墨烯在金属表面防腐中的应用. 必威体育下载 , 2021, 70(9): 098102.doi:10.7498/aps.70.20210349
        [6] 李泽宇, 姜去寒, 马腾洲, 袁英豪, 陈麟.基于太赫兹石墨烯等离激元的多参数相位可调谐结构及其应用. 必威体育下载 , 2021, 70(22): 224202.doi:10.7498/aps.70.20210445
        [7] 高伟, 王博扬, 韩庆艳, 韩珊珊, 程小同, 张晨雪, 孙泽煜, 刘琳, 严学文, 王勇凯, 董军.构建垂直金纳米棒阵列增强NaYF4:Yb3+/Er3+纳米晶体的上转换发光. 必威体育下载 , 2020, 69(18): 184213.doi:10.7498/aps.69.20200575
        [8] 胡宝晶, 黄铭, 黎鹏, 杨晶晶.基于纳米金属-石墨烯耦合的多频段等离激元诱导透明. 必威体育下载 , 2020, 69(17): 174201.doi:10.7498/aps.69.20200200
        [9] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦.等离激元增强的石墨烯光吸收. 必威体育下载 , 2020, 69(6): 067801.doi:10.7498/aps.69.20191645
        [10] 陈令修, 王慧山, 姜程鑫, 陈晨, 王浩敏.六方氮化硼表面石墨烯纳米带生长与物性研究. 必威体育下载 , 2019, 68(16): 168102.doi:10.7498/aps.68.20191036
        [11] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆.石墨烯等离激元增强红外光谱. 必威体育下载 , 2019, 68(14): 148103.doi:10.7498/aps.68.20190903
        [12] 白清顺, 沈荣琦, 何欣, 刘顺, 张飞虎, 郭永博.纳米微结构表面与石墨烯薄膜的界面黏附特性研究. 必威体育下载 , 2018, 67(3): 030201.doi:10.7498/aps.67.20172153
        [13] 陈浩, 张晓霞, 王鸿, 姬月华.基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究. 必威体育下载 , 2018, 67(11): 118101.doi:10.7498/aps.67.20180196
        [14] 邓红梅, 黄磊, 李静, 陆叶, 李传起.基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 必威体育下载 , 2017, 66(14): 145201.doi:10.7498/aps.66.145201
        [15] 张超杰, 周婷, 杜鑫鹏, 王同标, 刘念华.利用石墨烯等离激元与表面声子耦合增强量子摩擦. 必威体育下载 , 2016, 65(23): 236801.doi:10.7498/aps.65.236801
        [16] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳.基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 必威体育下载 , 2015, 64(10): 108402.doi:10.7498/aps.64.108402
        [17] 谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛.光子晶体增强石墨烯THz吸收. 必威体育下载 , 2014, 63(5): 057803.doi:10.7498/aps.63.057803
        [18] 张保磊, 王家序, 肖科, 李俊阳.石墨烯-纳米探针相互作用有限元准静态计算. 必威体育下载 , 2014, 63(15): 154601.doi:10.7498/aps.63.154601
        [19] 曾婷婷, 李鹏程, 周效信.两束同色激光场和中红外场驱动氦原子在等离激元中产生的单个阿秒脉冲. 必威体育下载 , 2014, 63(20): 203201.doi:10.7498/aps.63.203201
        [20] 尹海峰, 张红, 岳莉.C60富勒烯二聚物的等离激元激发. 必威体育下载 , 2014, 63(12): 127303.doi:10.7498/aps.63.127303
      计量
      • 文章访问数:707
      • PDF下载量:38
      • 被引次数:0
      出版历程
      • 收稿日期:2024-04-09
      • 修回日期:2024-05-10
      • 上网日期:2024-05-17
      • 刊出日期:2024-07-05

        返回文章
        返回
          Baidu
          map