搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    方泽, 潘泳全, 戴栋, 张俊勃

    Physics-informed neural networks based on source term decoupled and its application in discharge plasma simulation

    Fang Ze, Pan Yong-Quan, Dai Dong, Zhang Jun-Bo
    PDF
    HTML
    导出引用
    • 近年来, 以物理信息神经网络(PINNs)为代表的人工智能计算范式在等离子体数值模拟领域获得了极大关注, 但相关研究考虑的等离子体化学体系较为简化, 且基于PINNs求解更为复杂的多粒子低温等离子体流体模型的研究还尚处空白. 本文提出了一个通用的PINNs框架(源项解耦PINNs, Std-PINNs), 用于求解多粒子低温等离子体流体模型. Std-PINNs通过引入等效正离子, 并将电流连续性方程替代各粒子输运方程作为物理约束, 实现了重粒子输运方程源项与电子密度、平均电子能量的解耦, 极大降低了训练复杂度. 本文通过两个经典放电案例(低气压氩气辉光放电、大气压氦气辉光放电)展示了Std-PINNs在求解多粒子低温等离子体流体模型的应用, 并将结果与传统PINNs和有限元(FEM)模型进行了对比. 结果显示, 传统PINNs输出了完全错误的训练结果, 而Std-PINNs与FEM结果之间的 L 2相对误差能达到约10 –2量级, 由此验证了Std-PINNs在模拟多粒子等离子体流体模型的可行性. Std-PINNs为低温等离子体模拟提供了新的思路, 并拓展了深度学习方法在复杂物理系统建模中的应用.
      In recent years, the artificial intelligence computing paradigm represented by physics-informed neural networks (PINNs) has received great attention in the field of plasma numerical simulation. However, the plasma chemical system considered in related research is relatively simplified, and the research on solving the more complex multi-particle low-temperature fluid model based on PINNs is still blank. In more complex chemical systems, the coupling relationship between particle densities and between particle densities and mean electron energy become more intricate. Therefore, the applicability of PINNs in dealing with sophisticated reaction systems needs further exploring and improving. In this work, we propose a general PINN framework (source term decoupled PINNs, Std-PINNs) for solving multi-particle low-temperature plasma fluid model. By introducing equivalent positive ions and replacing each particle transport equation with the current continuity equation as a physical constraint, Std-PINN splits the entire solution process into the training processes of two neural networks, realizing the decoupling of the source term of the heavy particle transport equation from the electron density and mean electron energy, which greatly reduces the complexity of neural network training. In this work, the application of Std-PINNs to solving multi-particle low-temperature plasma fluid models is demonstrated through two classic discharge cases with different complexity of reaction systems (low-pressure argon glow discharge and atmospheric-pressure helium glow discharge) and the performance of Std-PINN is compared with that of conventional PINN and finite element method (FEM). The results show that the training results output from the traditional PINN are completely incorrect due to the strong coupling correlation of each physical variable through the source terms of each particle transport equation, while the L 2relative error between Std-PINN and FEM results can reach up to ~10 –2, thus verifying the feasibility of Std-PINN in simulating multi-particle plasma fluid model. Std-PINN expands the application of deep learning method to modeling complex physical systems and provides new ideas for conducting low-temperature plasma simulations. In addition, this study provides novel insights into the field of artificial intelligence scientific computing: the mathematical form that describes the state of a physical system is not unique. By introducing equivalent physical variables, equations suitable for neural network solutions can be derived and combined with observable data to simplify problems.
          通信作者:戴栋,ddai@scut.edu.cn
        • 基金项目:国家自然科学基金(批准号: 52377145)资助的课题.
          Corresponding author:Dai Dong,ddai@scut.edu.cn
        • Funds:Project supported by the National Natural Science Foundation of China (Grant No. 52377145).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

        [45]

        [46]

        [47]

        [48]

        [49]

        [50]

        [51]

        [52]

        [53]

      • 案例 ${n_0}$/m–3 ${\phi _0}$/V ${\bar \varepsilon _0}$/eV ${L_0}$/m
        1 1×1013 1×103 1 1×10–2
        2 5×1017 1×103 1 1×10–4
        下载: 导出CSV

        序号 反应方程 速率常数 焓/eV 参考文献
        1 e + Ar $\Rightarrow $ e + Ar f($ \overline{\boldsymbol{\varepsilon}} $) [48]
        2 e + Ar $\Rightarrow $ e + Ar* f($ \overline{\boldsymbol{\varepsilon}} $) 11.5 [48]
        3 e + Ar $\Rightarrow $ 2e + Ar+ f($ \overline{\boldsymbol{\varepsilon}} $) 15.8 [48]
        4 e + Ar*$\Rightarrow $ 2e + Ar+ f($ \overline{\boldsymbol{\varepsilon}} $) 4.43 [48]
        5 Ar*+ Ar*$\Rightarrow $ e + Ar+ Ar+ 6.2×10–16 [40]
        6 Ar*+ Ar $\Rightarrow $ Ar+ Ar 3×10–21 [40]
        注: 表中f($ \overline{\boldsymbol{\varepsilon}} $)代表电子碰撞反应的速率常数, 为平均电子能的函数, 通过向Bolsig+导入电子碰撞反应截面数据计算得到; 双体反应的速率常数单位为m3/s.
        下载: 导出CSV

        序号 反应方程 速率常数 焓/eV 参考文献
        1 e + He $\Rightarrow $ e + He f($ \overline{\boldsymbol{\varepsilon}} $) [48]
        2 e + He $\Rightarrow $ e + He* f($ \overline{\boldsymbol{\varepsilon}} $) 19.8 [48]
        3 e + He $\Rightarrow $ 2e + He+ f($ \overline{\boldsymbol{\varepsilon}} $) 24.6 [48]
        4 e + He*$\Rightarrow $ 2e + He+ $1.28 \times 10^{-13}\times T_{\rm e}^{0.6}\times \exp(-4.78/T_{\rm e}) $ 4.8 [41]
        5 e + He*$\Rightarrow $ e + He 2.9 × 10–15 –19.8 [41]
        6 e + ${\mathrm{He}}_2^* $ $\Rightarrow $ e + 2He 3.8 × 10–15 –17.9 [39]
        7 2e + He+$\Rightarrow $ e + He* 6.0 × 10–32× (Te/0.026)–4.4 –4.8 [4]
        8 2e + ${\mathrm{He}}_2^+ $ $\Rightarrow $ e + He + He* 4.0 × 10–32× (Te/0.026)–1 [39]
        9 e + He+ ${\mathrm{He}}_2^+ $ $\Rightarrow $2He + He* 5 × 10–39× (Te/0.026)–1 [39]
        10 2e + ${\mathrm{He}}_2^+ $ $\Rightarrow $ e + ${\mathrm{He}}_2^* $ 4.0 × 10–32× (Te/0.026)–1 [39]
        11 e + He+ He+$\Rightarrow $ He + He* 5.0 × 10–39× (Te/0.026)–1 [39]
        12 e + He+ ${\mathrm{He}}_2^+ $ $\Rightarrow $ He + ${\mathrm{He}}_2^* $ 1.0 × 10–38× (Te/0.026)–2 [39]
        13 e + ${\mathrm{He}}_2^* $ $\Rightarrow $ 2e + ${\mathrm{He}}_2^+ $ 5.0 × 10–15× (Te/0.026)–1 3.4 [39]
        14 He*+ 2He $\Rightarrow $ 3He 2.0 × 10–46 [39]
        15 2He*$\Rightarrow $ e + ${\mathrm{He}}_2^+ $ 2.9 × 10–15 [39]
        16 2He + He+$\Rightarrow $ He + ${\mathrm{He}}_2^+ $ 1.4 × 10–43 [4]
        17 2He + He*$\Rightarrow $ ${\mathrm{He}}_2^* $ + He 2 × 10–46 [4]
        18 He*+ ${\mathrm{He}}_2^* $ $\Rightarrow $ e + ${\mathrm{He}}_2^+ $ + He 5 × 10–16 [4]
        19 ${\mathrm{He}}_2^* $ + ${\mathrm{He}}_2^* $ $\Rightarrow $ e + ${\mathrm{He}}_2^+ $ + 2He 1.2 × 10–15 [4]
        20 ${\mathrm{He}}_2^* $ + He $\Rightarrow $ 3He 1.5 × 10–21 [4]
        注: 表中He*代表He(23S)及He(21S), He2*则代表He2(${\rm a}{}^3\Sigma_{\rm u}^+ $) .
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

        [45]

        [46]

        [47]

        [48]

        [49]

        [50]

        [51]

        [52]

        [53]

      • [1] 陈锦峰, 朱林繁.等离子体刻蚀建模中的电子碰撞截面数据. 必威体育下载 , 2024, 73(9): 095201.doi:10.7498/aps.73.20231598
        [2] 张东荷雨, 刘金宝, 付洋洋.激光维持等离子体多物理场耦合模型与仿真. 必威体育下载 , 2024, 73(2): 025201.doi:10.7498/aps.73.20231056
        [3] 王倩, 范元媛, 赵江山, 刘斌, 亓岩, 颜博霞, 王延伟, 周密, 韩哲, 崔惠绒.准分子激光器预电离过程影响分析. 必威体育下载 , 2023, 72(19): 194201.doi:10.7498/aps.72.20230731
        [4] 田十方, 李彪.基于梯度优化物理信息神经网络求解复杂非线性问题. 必威体育下载 , 2023, 72(10): 100202.doi:10.7498/aps.72.20222381
        [5] 吴健, 韩文, 程珍珍, 杨彬, 孙利利, 王迪, 朱程鹏, 张勇, 耿明昕, 景龑.基于流体模型的碳纳米管电离式传感器的结构优化方法. 必威体育下载 , 2021, 70(9): 090701.doi:10.7498/aps.70.20201828
        [6] 张权治, 张雷宇, 马方方, 王友年.多孔材料的低温刻蚀技术. 必威体育下载 , 2021, 70(9): 098104.doi:10.7498/aps.70.20202245
        [7] 何寿杰, 周佳, 渠宇霄, 张宝铭, 张雅, 李庆.氩气空心阴极放电复杂动力学过程的模拟研究. 必威体育下载 , 2019, 68(21): 215101.doi:10.7498/aps.68.20190734
        [8] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰.大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟. 必威体育下载 , 2018, 67(8): 085202.doi:10.7498/aps.67.20172192
        [9] 孙安邦, 李晗蔚, 许鹏, 张冠军.流注放电低温等离子体中电子输运系数计算的蒙特卡罗模型. 必威体育下载 , 2017, 66(19): 195101.doi:10.7498/aps.66.195101
        [10] 王学扬, 齐志华, 宋颖, 刘东平.等离子体放电活化生理盐水杀菌应用研究. 必威体育下载 , 2016, 65(12): 123301.doi:10.7498/aps.65.123301
        [11] 董烨, 董志伟, 周前红, 杨温渊, 周海京.沿面闪络流体模型电离参数粒子模拟确定方法. 必威体育下载 , 2014, 63(6): 067901.doi:10.7498/aps.63.067901
        [12] 何曼丽, 王晓, 张明, 王黎, 宋蕊.低温等离子体中H2(D2和T2)的振动分布. 必威体育下载 , 2014, 63(12): 125201.doi:10.7498/aps.63.125201
        [13] 赵朋程, 廖成, 杨丹, 钟选明, 林文斌.基于流体模型和非平衡态电子能量分布函数的高功率微波气体击穿研究. 必威体育下载 , 2013, 62(5): 055101.doi:10.7498/aps.62.055101
        [14] 刘富成, 晏雯, 王德真.针板型大气压氦气冷等离子体射流的二维模拟. 必威体育下载 , 2013, 62(17): 175204.doi:10.7498/aps.62.175204
        [15] 张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊.大气压Ar/NH3介质阻挡辉光放电的仿真研究. 必威体育下载 , 2012, 61(24): 245205.doi:10.7498/aps.61.245205
        [16] 张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕.大气压氩气介质阻挡辉光放电的一维仿真研究. 必威体育下载 , 2012, 61(4): 045205.doi:10.7498/aps.61.045205
        [17] 邵先军, 马跃, 李娅西, 张冠军.低气压氙气介质阻挡放电的一维仿真研究. 必威体育下载 , 2010, 59(12): 8747-8754.doi:10.7498/aps.59.8747
        [18] 周俐娜, 王新兵.微空心阴极放电的流体模型模拟. 必威体育下载 , 2004, 53(10): 3440-3446.doi:10.7498/aps.53.3440
        [19] 刘成森, 王德真.空心圆管端点附近等离子体源离子注入过程中鞘层的时空演化. 必威体育下载 , 2003, 52(1): 109-114.doi:10.7498/aps.52.109
        [20] 刘洪祥, 魏合林, 刘祖黎, 刘艳红, 王均震.磁镜场对射频等离子体中离子能量分布的影响. 必威体育下载 , 2000, 49(9): 1764-1768.doi:10.7498/aps.49.1764
      计量
      • 文章访问数:509
      • PDF下载量:22
      • 被引次数:0
      出版历程
      • 收稿日期:2024-03-10
      • 修回日期:2024-05-14
      • 上网日期:2024-06-18
      • 刊出日期:2024-07-20

        返回文章
        返回
          Baidu
          map