\begin{document}$ {{Re} _{\text{b}}} $\end{document}, \begin{document}$ {Pr _{\text{b}}} $\end{document}, \begin{document}$ {{{\rho _{\text{b}}}} \mathord{\left/ {\vphantom {{{\rho _{\text{b}}}} {{\rho _{\text{w}}}}}} \right. } {{\rho _{\text{w}}}}} $\end{document}, \begin{document}$ {{{{\overline C }_{\text{p}}}} \mathord{\left/ {\vphantom {{{{\overline C }_{\text{p}}}} {{C_{{\text{pw}}}}}}} \right. } {{C_{{\text{pw}}}}}} $\end{document}, \begin{document}$ {{{\lambda _{\text{b}}}} \mathord{\left/ {\vphantom {{{\lambda _{\text{b}}}} {{\lambda _{\text{w}}}}}} \right. } {{\lambda _{\text{w}}}}} $\end{document}, \begin{document}$ {{{\mu _{\text{b}}}} \mathord{\left/ {\vphantom {{{\mu _{\text{b}}}} {{\mu _{\text{w}}}}}} \right. } {{\mu _{\text{w}}}}} $\end{document}的预测表现最好, 对于试验集的预测结果的平均绝对偏差和最大偏差仅为2.02%和9.34%, 远低于传热关联式预测偏差, 且对于高温段h的趋势、h最大值以及h峰值位置的预测比关联式更加准确. 此外, 将遗传算法优化的BP (GA-BP)模型与BP模型在两种不同的适应度值计算方式下进行比较, 揭示GA-BP在提高超临界传热预测精度方面的有效性. 研究表明, 当网络训练与适应度值计算采用相同数据时, 将引起过拟合, 并不能进一步提高预测精度; 当网络训练与适应度值计算采用不同数据时, 可使得网络泛化性能提高, 预测结果的均方根偏差和最大偏差均有进一步的降低."> - 必威体育下载

搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    周文力, 卓伟伟, 蒋依然, 马文杰, 董宝君

    Neural network prediction of cooling heat transfer characteristics of supercritical R1234ze(E) in horizontal tube

    Zhou Wen-Li, Zhuo Wei-Wei, Jiang Yi-Ran, Ma Wen-Jie, Dong Bao-Jun
    PDF
    HTML
    导出引用
    • 为探究神经网络在预测超临界传热方面的有效性, 建立了水平直管内超临界R1234ze(E)冷却传热的神经网络预测模型, 并与修正的Dittus-Boelter (D-B)型传热关联式进行比较分析. 研究表明, 输入参数对于反向传播神经网络(BPNN)预测精度的影响很大, 且并非所有BPNN输入参数组合都能带来比传热关联式更好的预测结果. 输入参数组合 $ {{Re} _{\text{b}}} $ , $ {Pr _{\text{b}}} $ , $ {{{\rho _{\text{b}}}} \mathord{\left/ {\vphantom {{{\rho _{\text{b}}}} {{\rho _{\text{w}}}}}} \right. } {{\rho _{\text{w}}}}} $ , $ {{{{\overline C }_{\text{p}}}} \mathord{\left/ {\vphantom {{{{\overline C }_{\text{p}}}} {{C_{{\text{pw}}}}}}} \right. } {{C_{{\text{pw}}}}}} $ , $ {{{\lambda _{\text{b}}}} \mathord{\left/ {\vphantom {{{\lambda _{\text{b}}}} {{\lambda _{\text{w}}}}}} \right. } {{\lambda _{\text{w}}}}} $ , $ {{{\mu _{\text{b}}}} \mathord{\left/ {\vphantom {{{\mu _{\text{b}}}} {{\mu _{\text{w}}}}}} \right. } {{\mu _{\text{w}}}}} $ 的预测表现最好, 对于试验集的预测结果的平均绝对偏差和最大偏差仅为2.02%和9.34%, 远低于传热关联式预测偏差, 且对于高温段 h的趋势、 h最大值以及 h峰值位置的预测比关联式更加准确. 此外, 将遗传算法优化的BP (GA-BP)模型与BP模型在两种不同的适应度值计算方式下进行比较, 揭示GA-BP在提高超临界传热预测精度方面的有效性. 研究表明, 当网络训练与适应度值计算采用相同数据时, 将引起过拟合, 并不能进一步提高预测精度; 当网络训练与适应度值计算采用不同数据时, 可使得网络泛化性能提高, 预测结果的均方根偏差和最大偏差均有进一步的降低.
      The prediction of heat transfer coefficients or wall temperatures of heat exchanger tubes is an important research topic in supercritical heat transfer, which is extremely significant for the application of supercritical fluids in industrial production and the design of the entire thermal system. At present, the empirical correlation method is the most widely adopted prediction method, but its predicted heat transfer coefficient still has significant difference from the actual data near the pseudo-critical temperature. Therefore, some scholars proposed using artificial neural networks to predict the heat transfer performance of supercritical fluids in tubes. On the basis of previous researches, this work further explores the effectiveness of artificial neural network in predicting supercritical heat transfer, focusing on the influence of input parameters on neural network prediction results and the influence of genetic algorithm optimization on the prediction results. In this research, a neural network prediction model for supercritical R1234ze(E) cooled in horizontal straight tubes is established and compared with the modified D-B heat transfer correlation. The result shows that the input parameter has great influence on the prediction accuracy of BPNN, and not all BPNN input parameter combinations can bring better prediction results than heat transfer correlation. The combination of $ {{Re} _{\text{b}}} $ , $ {Pr _{\text{b}}} $ , $ {{{\rho _{\text{b}}}} \mathord{\left/ {\vphantom {{{\rho _{\text{b}}}} {{\rho _{\text{w}}}}}} \right. } {{\rho _{\text{w}}}}} $ , $ {{{{\overline C }_{\text{p}}}} \mathord{\left/ {\vphantom {{{{\overline C }_{\text{p}}}} {{C_{{\text{pw}}}}}}} \right. } {{C_{{\text{pw}}}}}} $ , $ {{{\lambda _{\text{b}}}} \mathord{\left/ {\vphantom {{{\lambda _{\text{b}}}} {{\lambda _{\text{w}}}}}} \right. } {{\lambda _{\text{w}}}}} $ , $ {{{\mu _{\text{b}}}} \mathord{\left/ {\vphantom {{{\mu _{\text{b}}}} {{\mu _{\text{w}}}}}} \right. } {{\mu _{\text{w}}}}} $ features the best prediction performance. The AAD and Error maxof the prediction result for the trial set are only 2.02% and 9.34%, which are far lower than the prediction deviation of the heat transfer correlation, and the predictions of the trend of hin the high temperature region, the maximum value of hand the position of the peak value of hare more precise than heat transfer correlation. Moreover, this research compares GA-BP model with BP model under two different fitness value calculation methods to reveal the effectiveness of GA-BP in enhancing the prediction accuracy of supercritical heat transfer, concluding that when the same dataset is adopted for network training and fitness value calculation, over-fitting will occur and the GA-BP cannot further improve the prediction accuracy; when different datasets are used to train the network and calculate the fitness value, the generalization ability of the network will be strengthened, and the root mean square deviation and the maximum deviation of the prediction result can be further reduced. This work will provide a practical tool for predicting the cooling convection heat transfer of supercritical R1234ze(E) in horizontal tubes, laying the foundation for its application in trans-critical heat pump systems, and providing inspiration for potential research directions of ANN in supercritical heat transfer prediction.
          通信作者:蒋依然,jiangyr@cdut.edu.cn
        • 基金项目:国家自然科学基金(批准号: 52176171)资助的课题.
          Corresponding author:Jiang Yi-Ran,jiangyr@cdut.edu.cn
        • Funds:Project supported by the National Natural Science Foundation of China (Grant No. 52176171).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

      • Case d/mm G/(kg·m–2·s–1) q/(kW·m–2) P/MPa Tb/K
        1—12 3, 4, 5, 6, 7, 8, 9, 10,
        11, 12, 13, 14
        320 –40 4.0 370—420
        13—24 6 160, 200, 240, 280, 320, 360,
        400, 440, 480, 520, 560, 600
        –40 4.0 370—420
        25—34 6 320 –10, –20, –30, –40, –50, –60,
        –70, –80, –90, –100
        4.0 370—420
        35—44 6 320 –40 3.8, 4.0, 4.2, 4.4,
        4.6, 4.8, 5.0, 5.2,
        370—420
        下载: 导出CSV

        序号 项目 值或选择
        1 隐藏层神经元数目 由测试集的预测结果确定
        2 隐藏层传递函数 tansig
        3 输出层传递函数 purelin
        4 训练函数类型 由测试集的预测结果确定
        5 学习函数类型 learngdm
        6 最大迭代次数 20000
        7 训练目标误差 10–10
        8 网络学习速率 0.1
        9 验证集最大确认失败数 6
        下载: 导出CSV

        d/mm G/(kg·m–2·s–1) q/(kW·m–2) P/MPa
        Case 1 8 250 –75 3.9
        Case 2 5 460 –55 3.9
        Case 3 8 220 –65 4.5
        Case 4 7 300 –25 4.5
        下载: 导出CSV

        输入参数 试验集预测结果
        AAD/% RMSE/% Errormax/%
        传热关联式 5.58 7.72 29.40
        BP神经网络 1) $ {{Re} _{\text{b}}} $, $ {Pr _{\text{b}}} $, $ {{{\rho _{\text{b}}}} \mathord{\left/ {\vphantom {{{\rho _{\text{b}}}} {{\rho _{\text{w}}}}}} \right. } {{\rho _{\text{w}}}}} $, $ {{{{\overline C }_{\text{p}}}} \mathord{\left/ {\vphantom {{{{\overline C }_{\text{p}}}} {{C_{{\text{pw}}}}}}} \right. } {{C_{{\text{pw}}}}}} $, $ {{Gr} \mathord{\left/ {\vphantom {{Gr} {{Re} _{\text{b}}^{2}}}} \right. } {{Re} _{\text{b}}^{2}}} $ 8.24 12.40 43.98
        2) $ {{Re} _{\text{b}}} $, $ {Pr _{\text{b}}} $, $ {{{\rho _{\text{b}}}} \mathord{\left/ {\vphantom {{{\rho _{\text{b}}}} {{\rho _{\text{w}}}}}} \right. } {{\rho _{\text{w}}}}} $, $ {{{{\overline C }_{\text{p}}}} \mathord{\left/ {\vphantom {{{{\overline C }_{\text{p}}}} {{C_{{\text{pw}}}}}}} \right. } {{C_{{\text{pw}}}}}} $ 3.51 5.07 15.19
        3) $ {{Re} _{\text{b}}} $, $ {Pr _{\text{b}}} $, $ {{{\rho _{\text{b}}}} \mathord{\left/ {\vphantom {{{\rho _{\text{b}}}} {{\rho _{\text{w}}}}}} \right. } {{\rho _{\text{w}}}}} $, $ {{{{\overline C }_{\text{p}}}} \mathord{\left/ {\vphantom {{{{\overline C }_{\text{p}}}} {{C_{{\text{pw}}}}}}} \right. } {{C_{{\text{pw}}}}}} $, $ {{{\lambda _{\text{b}}}} \mathord{\left/ {\vphantom {{{\lambda _{\text{b}}}} {{\lambda _{\text{w}}}}}} \right. } {{\lambda _{\text{w}}}}} $, $ {{{\mu _{\text{b}}}} \mathord{\left/ {\vphantom {{{\mu _{\text{b}}}} {{\mu _{\text{w}}}}}} \right. } {{\mu _{\text{w}}}}} $ 2.02 3.01 9.34
        4) G,q,d,Tb, $ {\rho _{\text{b}}} $ 9.89 15.52 73.24
        5) G,q,d,Tb, $ {\rho _{\text{b}}} $, $ {C_{{\text{pb}}}} $, $ {\lambda _{\text{b}}} $, $ {\mu _{\text{b}}} $, 4.58 5.35 11.35
        6) G,q,d,Tb, $ {\rho _{\text{b}}} $, $ {{{\rho _{\text{b}}}} \mathord{\left/ {\vphantom {{{\rho _{\text{b}}}} {{\rho _{\text{w}}}}}} \right. } {{\rho _{\text{w}}}}} $, $ {{{{\overline C }_{\text{p}}}} \mathord{\left/ {\vphantom {{{{\overline C }_{\text{p}}}} {{C_{{\text{pw}}}}}}} \right. } {{C_{{\text{pw}}}}}} $, $ {{{\lambda _{\text{b}}}} \mathord{\left/ {\vphantom {{{\lambda _{\text{b}}}} {{\lambda _{\text{w}}}}}} \right. } {{\lambda _{\text{w}}}}} $, $ {{{\mu _{\text{b}}}} \mathord{\left/ {\vphantom {{{\mu _{\text{b}}}} {{\mu _{\text{w}}}}}} \right. } {{\mu _{\text{w}}}}} $ 47.24 63.17 224.89
        7) G,q,d,Tb, $ {\rho _{\text{b}}} $, $ {C_{{\text{pb}}}} $, $ {\lambda _{\text{b}}} $, $ {\mu _{\text{b}}} $, $ {{{\rho _{\text{b}}}} \mathord{\left/ {\vphantom {{{\rho _{\text{b}}}} {{\rho _{\text{w}}}}}} \right. } {{\rho _{\text{w}}}}} $, $ {{{{\overline C }_{\text{p}}}} \mathord{\left/ {\vphantom {{{{\overline C }_{\text{p}}}} {{C_{{\text{pw}}}}}}} \right. } {{C_{{\text{pw}}}}}} $, $ {{{\lambda _{\text{b}}}} \mathord{\left/ {\vphantom {{{\lambda _{\text{b}}}} {{\lambda _{\text{w}}}}}} \right. } {{\lambda _{\text{w}}}}} $, $ {{{\mu _{\text{b}}}} \mathord{\left/ {\vphantom {{{\mu _{\text{b}}}} {{\mu _{\text{w}}}}}} \right. } {{\mu _{\text{w}}}}} $ 52.52 63.15 151.79
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

      • [1] 宋天舒, 夏辉.基于数值稳定型神经网络的Villain-Lai-Das Sarma方程的动力学标度行为研究. 必威体育下载 , 2024, 73(16): 160501.doi:10.7498/aps.73.20240852
        [2] 黄宇航, 陈理想.基于未训练神经网络的分数傅里叶变换成像. 必威体育下载 , 2024, 73(9): 094201.doi:10.7498/aps.73.20240050
        [3] 马锐垚, 王鑫, 李树, 勇珩, 上官丹骅.基于神经网络的粒子输运问题高效计算方法. 必威体育下载 , 2024, 73(7): 072802.doi:10.7498/aps.73.20231661
        [4] 杨莹, 曹怀信.量子混合态的两种神经网络表示. 必威体育下载 , 2023, 72(11): 110301.doi:10.7498/aps.72.20221905
        [5] 方波浪, 王建国, 冯国斌.基于物理信息神经网络的光斑质心计算. 必威体育下载 , 2022, 71(20): 200601.doi:10.7498/aps.71.20220670
        [6] 李靖, 孙昊.识别Z玻色子喷注的卷积神经网络方法. 必威体育下载 , 2021, 70(6): 061301.doi:10.7498/aps.70.20201557
        [7] 孙立望, 李洪, 汪鹏君, 高和蓓, 罗孟波.利用神经网络识别高分子链在表面的吸附相变. 必威体育下载 , 2019, 68(20): 200701.doi:10.7498/aps.68.20190643
        [8] 魏德志, 陈福集, 郑小雪.基于混沌理论和改进径向基函数神经网络的网络舆情预测方法. 必威体育下载 , 2015, 64(11): 110503.doi:10.7498/aps.64.110503
        [9] 李欢, 王友国.一类非线性神经网络中噪声改善信息传输. 必威体育下载 , 2014, 63(12): 120506.doi:10.7498/aps.63.120506
        [10] 陈铁明, 蒋融融.混沌映射和神经网络互扰的新型复合流密码. 必威体育下载 , 2013, 62(4): 040301.doi:10.7498/aps.62.040301
        [11] 李华青, 廖晓峰, 黄宏宇.基于神经网络和滑模控制的不确定混沌系统同步. 必威体育下载 , 2011, 60(2): 020512.doi:10.7498/aps.60.020512
        [12] 赵海全, 张家树.混沌通信系统中非线性信道的自适应组合神经网络均衡. 必威体育下载 , 2008, 57(7): 3996-4006.doi:10.7498/aps.57.3996
        [13] 王永生, 孙 瑾, 王昌金, 范洪达.变参数混沌时间序列的神经网络预测研究. 必威体育下载 , 2008, 57(10): 6120-6131.doi:10.7498/aps.57.6120
        [14] 牛培峰, 张 君, 关新平.基于遗传算法的统一混沌系统比例-积分-微分神经网络解耦控制研究. 必威体育下载 , 2007, 56(5): 2493-2497.doi:10.7498/aps.56.2493
        [15] 行鸿彦, 徐 伟.混沌背景中微弱信号检测的神经网络方法. 必威体育下载 , 2007, 56(7): 3771-3776.doi:10.7498/aps.56.3771
        [16] 王瑞敏, 赵 鸿.神经元传输函数对人工神经网络动力学特性的影响. 必威体育下载 , 2007, 56(2): 730-739.doi:10.7498/aps.56.730
        [17] 熊 涛, 常胜江, 申金媛, 张延炘.用于可变比特率视频通信量预测的自适应训练及删剪算法. 必威体育下载 , 2005, 54(4): 1931-1936.doi:10.7498/aps.54.1931
        [18] 王耀南, 谭 文.混沌系统的遗传神经网络控制. 必威体育下载 , 2003, 52(11): 2723-2728.doi:10.7498/aps.52.2723
        [19] 谭文, 王耀南, 刘祖润, 周少武.非线性系统混沌运动的神经网络控制. 必威体育下载 , 2002, 51(11): 2463-2466.doi:10.7498/aps.51.2463
        [20] .神经网络的自适应删剪学习算法及其应用. 必威体育下载 , 2001, 50(4): 674-681.doi:10.7498/aps.50.674
      计量
      • 文章访问数:743
      • PDF下载量:27
      • 被引次数:0
      出版历程
      • 收稿日期:2024-02-21
      • 修回日期:2024-04-30
      • 上网日期:2024-05-10
      • 刊出日期:2024-06-20

        返回文章
        返回
          Baidu
          map