\begin{document}$ 3{\mathrm{s}}\to 4{\mathrm{l}} \;(\Delta n=1) $\end{document}的共振跃迁对实验谱线有很大的贡献. 实验结果表明, CSRe双电子复合实验平台具有非常好的稳定性和可重复性, 能够为下一步开展更高电荷态离子的双电子复合精密谱学实验、检验强场量子电动力学效应以及原子核性质精密测量等前沿实验提供支持."> - 必威体育下载

搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

邵林, 黄忠魁, 汶伟强, 汪书兴, 黄厚科, 马万路, 刘畅, 汪寒冰, 陈冬阳, 刘鑫, 周晓鹏, 赵冬梅, 张少锋, 朱林繁, 马新文

Dielectronic recombination experiment of Na-like Kr25+at heavy ion storage ring CSRe

Shao Lin, Huang Zhong-Kui, Wen Wei-Qiang, Wang Shu-Xing, Huang Hou-Ke, Ma Wan-Lu, Liu Chang, Wang Han-Bing, Chen Dong-Yang, Liu Xin, Zhou Xiao-Peng, Zhao Dong-Mei, Zhang Shao-Feng, Zhu Lin-Fan, Ma Xin-Wen
PDF
HTML
导出引用
  • 高电荷态离子的双电子复合精密谱学实验研究, 不仅对天体等离子体和聚变等离子体的研究具有重要意义, 而且可以作为一种新的精密谱学工具, 用来检验强场量子电动力学效应、测量同位素移动及提取原子核电荷半径等. 在兰州重离子储存环CSRe上, 安装了专门用于电子-离子复合精密谱学实验的电子束能量调制系统, 质心系下电子-离子碰撞能量的调制范围达到0—1 keV. 在CSRe电子冷却器下游安装了自主研制的塑料闪烁体探测器和多丝正比探测器, 用于探测复合离子. 在此基础上, 使用Kr 25+离子在CSRe上进行了首次双电子复合测试实验, 实验测量了质心系能量0—70 eV的双电子复合速率系数. 为了更好地理解实验测量结果, 利用FAC (flexible atomic code)程序计算了Kr 25+离子的双电子复合速率系数, 并与实验做了细致对比, 整体符合很好, 而且发现 $ 3{\mathrm{s}}\to 4{\mathrm{l}} \;(\Delta n=1) $ 的共振跃迁对实验谱线有很大的贡献. 实验结果表明, CSRe双电子复合实验平台具有非常好的稳定性和可重复性, 能够为下一步开展更高电荷态离子的双电子复合精密谱学实验、检验强场量子电动力学效应以及原子核性质精密测量等前沿实验提供支持.
    The experimental study of precision spectroscopy of dielectronic recombination (DR) of highly charged ions is not only important for astronomical plasma and fusion plasma, but also can be used as a new precision spectroscopy to test the strong-field quantum electrodynamic effect, measure isotope shift, and extract the radius of atomic nuclei. An specially designed electron beam energy detuning system for electron-ion recombination precision spectroscopy experiments has been installed on the heavy ion storage ring CSRe in Lanzhou, China, where the electron-ion collision energy in the center-of-mass system can be detuned to 1 keV, and an independently-developed plastic scintillator detector and multiwire proportional chamber detector have been installed downstream of the electron cooler of the CSRe for detecting recombined ions. The multiwire proportional chamber detector has the ability to non-destructively monitor the profile of the ion beam in real-time while acquiring the recombined ion counts, providing guidance for optimizing the ion beam. On this basis, the first test experiment on dielectronic recombination of Kr 25+ions is carried out at the CSRe, and the dielectronic recombination rate coefficients in a range of 0–70 eV in the frame of center-of-mass are measured. In order to fully understand the experimental results, we calculate the dielectronic recombination rate coefficient of the Kr 25+ion by using the flexible atomic code (FAC) and make a detailed comparison with the experimental result, showing that they are in good agreement with each other, and only the resonance energy values of the two resonance peaks at 1.695 eV and 2.573 eV are significantly different. In addition, the DR resonance energy values and intensities are obtained by fitting the experimental results in a range of 0–35 eV, and we find that the transition 3s→4l (∆ n= 1) contributes significantly to the experimental spectral lines. Furthermore, we compare the plasma rate coefficients derived from the DR rate coefficients with those derived from the AUTOSTRUCTURE and FAC theories, which differ by 20 percent in a temperature range less than 10 6K. The experimental results show that the DR experimental platform of the CSRe has very good stability and reproducibility, and can provide support for the future DR experiments of highly charged ion, i.e. for testing strong-field quantum electrodynamics effect and measuring the properties of atomic nuclei.
        通信作者:汶伟强,wenweiqiang@impcas.ac.cn; 朱林繁,lfzhu@ustc.edu.cn; 马新文,x.ma@impcas.ac.cn
      • 基金项目:国家重点研发计划(批准号: 2022YFA1602500)、国家自然科学基金(批准号: 12393824,12334010, U1932207)、中国科学院战略先导科技专项(B)(批准号: XDB34020000)和中国科学院青年创新促进会资助的课题.
        Corresponding author:Wen Wei-Qiang,wenweiqiang@impcas.ac.cn; Zhu Lin-Fan,lfzhu@ustc.edu.cn; Ma Xin-Wen,x.ma@impcas.ac.cn
      • Funds:Project supported by the National Key R&D Program of China (Grant No. 2022YFA1602500), the National Natural Science Foundation of China (Grant Nos. 12393824, 12334010, U1932207), the Strategic Priority Research Program (B) of Chinese Academy of Science (Grant No. XDB34020000), and the Youth Innovation Promotion Association of the Chinese Academy of Science.
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

    • 实验参数 实验装置(CSRe)
      储存环周长/m 128.8
      相互作用长度/m 4.0
      离子束能量/(MeV·u–1) 80
      离子束流强/μA 300—450
      电子束流强/mA 287.5
      电子束半径/cm 2.60
      横向电子温度/meV 75.14
      纵向电子温度/meV 1.26
      冷却段磁场强度/G 390
      枪区磁场强度/G 1250
      下载: 导出CSV

      双激发态组态 共振能量/eV 共振强度/(10–19eV·cm2)
      FAC 实验 FAC 实验
      4s[2S1/2]4d5/2(J= 2) 1.530 1.695±0.001 75.2 93.8±0.6
      3d[2D3/2]8s (J= 1) 2.090 2.119±0.009 7.1 8.4±0.6
      3d[2D3/2]8s (J= 2) 2.405 2.573±0.001 62.2 56.1±0.6
      3p[2P1/2]13s 3.869 3.804±0.049 1.5 1.9±0.6
      3d[2D5/2]8s (J= 3) 4.530 7.3
      3p[2P1/2]13p1/2 4.565a 4.4
      Blend 4.543a 4.561±0.012 11.7 17.4±1.2
      3d[2D3/2]8p1/2(J= 2) 4.660 6.4
      3d[2D5/2]8s (J= 2) 4.690 11.0
      3d[2D3/2]8p1/2(J= 1) 4.754 3.9
      Blend 4.693a 4.789±0.013 21.2 15.8±1.2
      3d[2D3/2]8p3/2 5.338 5.216±0.021 14.8 13.8±1.7
      3p[2P1/2]13d 5.384a 5.448±0.032 7.2 11.5±1.4
      3p[2P1/2]13f 5.838a 5.747±0.029 12.4 13.9±1.5
      3p[2P1/2]13l (lg) 6.003a 6.000±0.006 40.4 44.7±1.9
      3d[2D5/2]8p1/2(J= 2, 3) 7.129a 7.154±0.022 14.6 12.5±1.3
      3p[2P3/2]12s (J= 1, 2) 7.465a 7.494±0.095 2.0 6.8±2.3
      3d[2D5/2]8p3/2(J= 2, 3, 4) 7.705a 7.767±0.034 26.8 18.6±2.2
      4s[2S1/2]4f5/2(J= 2) 8.129 8.161±0.028 37.9 39.2±5.2
      3d[2D5/2]8p3/2(J= 1) 8.063 2.3
      3p[2P3/2]12p1/2 8.245 2.2
      3p[2P3/2]12p3/2(J= 1, 2, 3) 8.404a 3.8
      3d[2D3/2]8d3/2 8.596 12.7
      Blend 8.466a 8.391±0.045 21.0 20.1±5.2
      4s[2S1/2]4f5/2(J= 3) 8.880 8.790±0.010 53.9 58.2±1.3
      3d[2D3/2]8d5/2 8.813a 21.1
      3p[2P3/2]12d 9.404a 8.9
      Blend 8.988a 9.143±0.014 30.0 41.2±1.3
      4s[2S1/2]4f5/2(J= 4) 9.577 9.546±0.018 65.7 60.6±4.0
      4s[2S1/2]4f5/2(J= 3) 9.737 9.842±0.023 55.8 75.1±3.2
      3p[2P3/2]12l (lf) 10.139a 10.138±0.020 77.5 67.0±3.8
      3d[2D3/2]8f 10.721a 10.694±0.041 39.8 51.9±2.0
      3d[2D5/2]8d 11.227a 11.224±0.023 33.1 58.3±2.8
      3d[2D3/2]8l (lg) 11.313a 11.504±0.009 70.7 60.3±4.5
      3p[2P1/2]14d 12.443a 12.732±0.044 3.5 10.1±1.7
      3p[2P1/2]14l (lf) 12.907a 13.101±0.013 19.4 41.0±1.4
      3d[2D5/2]8f 13.276a 13.616±0.018 25.4 39.2±1.8
      3d[2D5/2]8l (lg) 13.770a 13.964±0.006 83.4 67.5±2.2
      4p[2P1/2]4d5/2(J= 3) 16.337 12.3
      4p[2P1/2]4d5/2(J= 2) 16.500 4.0
      Blend 16.377a 16.482±0.013 16.3 14.1±1.0
      3p[2P3/2]13p 17.491a 17.36±0.14 2.4 2.0±1.0
      3p[2P1/2]15p 17.601a 17.74±0.12 0.8 3.0±0.8
      Blend 17.517a 17.579±0.036 3.2 3.3±0.3
      3p[2P1/2]15d 18.131a 1.4
      3p[2P3/2]13d 18.313a 3.6
      Blend 18.262a 18.226±0.057 5.1 7.2±1.4
      4p[2P1/2]4d5/2(J= 1) 18.466 5.2
      3p[2P1/2]15l (lf) 18.533a 8.8
      Blend 18.508a 18.609±0.031 14.0 21.6±1.0
      3p[2P3/2]13l (lf) 18.930a 18.976±0.008 25.5 32.2±1.6
      4p[2P3/2]4d5/2(J= 2) 20.038 20.162±0.022 5.1 4.2±0.3
      4p[2P3/2]4d5/2(J= 0) 21.802 1.7
      4p[2P3/2]4d5/2(J= 1) 22.054 4.2
      Blend 21.984a 22.086±0.025 5.9 5.1±0.3
      4p[2P3/2]4d5/2(J= 3) 22.444 4.3
      4p[2P3/2]4d5/2(J= 2) 22.502 5.4
      Blend 22.476a 22.614±0.020 9.7 8.7±0.3
      3p[2P1/2]16l 23.005a 23.164±0.018 9.5 7.3±0.3
      3p[2P3/2]14p 24.715a 1.4
      3p[2P3/2]14d 25.371a 2.2
      Blend 25.111a 25.480±0.052 3.6 7.1±1.0
      3p[2P3/2]14l (lf) 25.865a 25.941±0.013 20.7 21.2±1.0
      3p[2P1/2]17l 26.821a 26.917±0.022 7.2 7.0±0.4
      3p[2P1/2]18l 30.020a 30.277±0.024 6.1 6.8±0.3
      3p[2P3/2]15l 31.348a 31.695±0.011 16.4 22.6±0.9
      4p[2P1/2]4f5/2(J= 3) 32.424 1.6
      3p[2P1/2]19l 32.739a 7.5
      Blend 32.683a 32.804±0.028 9.2 9.5±0.5
      aWeighted energy: $ {E}_{{\mathrm{d}}}= {\displaystyle\sum {E}_{{\mathrm{d}}}{S}_{{\mathrm{d}}}}\Big/{\displaystyle\sum {S}_{{\mathrm{d}}}} $
      下载: 导出CSV

      i 实验 FAC
      ci Ei ci Ei
      1 1.01[–1] 37.1 4.65[–2] 24.7
      2 2.28[–1] 63.9 2.07[–1] 53.4
      3 1.95[–3] 1.74 7.35[–2] 92.9
      4 3.30[–2] 121 1.05[–2] 6.15
      5 3.99[–2] 15.5 8.90[–4] 1.42
      6 4.34[–2] 9.07 1.57[–3] 2.36
      7 3.88[–3] 4.17 5.37[–2] 5.37
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

    • [1] 孙堂友, 余燕丽, 覃祖彬, 陈赞辉, 陈均丽, 江玥, 张法碧.基于TiO2纳米柱的多波段响应Cs2AgBiBr6双钙钛矿光电探测器. 必威体育下载 , 2024, 73(7): 078502.doi:10.7498/aps.73.20231919
      [2] 李杭, 陈萍, 田进寿, 薛彦华, 王俊锋, 缑永胜, 张敏睿, 何凯, 徐向晏, 赛小锋, 李亚晖, 刘百玉, 王向林, 辛丽伟, 高贵龙, 汪韬, 王兴, 赵卫.基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器. 必威体育下载 , 2022, 71(2): 028501.doi:10.7498/aps.71.20210871
      [3] 温志文, 祁辉荣, 张余炼, 王海云, 刘凌, 王艳凤, 张建, 李玉红, 孙志嘉.用于中国散裂中子源多功能反射谱仪的高气压多丝正比室探测器的研制. 必威体育下载 , 2018, 67(7): 072901.doi:10.7498/aps.67.20172618
      [4] 张天奎, 于明海, 董克攻, 吴玉迟, 杨靖, 陈佳, 卢峰, 李纲, 朱斌, 谭放, 王少义, 闫永宏, 谷渝秋.激光高能X射线成像中探测器表征与电子影响研究. 必威体育下载 , 2017, 66(24): 245201.doi:10.7498/aps.66.245201
      [5] 温志文, 祁辉荣, 王艳凤, 孙志嘉, 张余炼, 王海云, 张建, 欧阳群, 陈元柏, 李玉红.二维多丝室探测器读出方法的优化. 必威体育下载 , 2017, 66(7): 072901.doi:10.7498/aps.66.072901
      [6] 符彦飙, 王旭东, 苏茂根, 董晨钟.Au34+离子双电子复合过程的理论研究. 必威体育下载 , 2016, 65(3): 033401.doi:10.7498/aps.65.033401
      [7] 温志文, 祁辉荣, 代洪亮, 张余炼, 魏堃, 张建, 欧阳群, 邵剑雄.一维丝室气体探测器衍射像差的修正方法研究. 必威体育下载 , 2015, 64(8): 082901.doi:10.7498/aps.64.082901
      [8] 范胜男, 王波, 祁辉荣, 刘梅, 张余炼, 张建, 刘荣光, 伊福廷, 欧阳群, 陈元柏.高增益型气体电子倍增微网结构探测器的性能研究. 必威体育下载 , 2013, 62(12): 122901.doi:10.7498/aps.62.122901
      [9] 杨建会, 范强, 张建平.类氖等电子系列离子基态的双电子复合速率系数研究. 必威体育下载 , 2012, 61(19): 193101.doi:10.7498/aps.61.193101
      [10] 王巍, 蒋刚.基于双激发态对稠密等离子体中双电子复合速率系数的研究. 必威体育下载 , 2010, 59(11): 7815-7823.doi:10.7498/aps.59.7815
      [11] 师应龙, 董晨钟, 张登红, 符彦飙.高离化态Hg和U离子的双电子复合过程的理论研究. 必威体育下载 , 2008, 57(1): 88-95.doi:10.7498/aps.57.88
      [12] 张登红, 董晨钟, 颉录有, 丁晓斌, 符彦飙.类氦离子的KLL双电子复合过程的相对论理论研究. 必威体育下载 , 2006, 55(1): 112-118.doi:10.7498/aps.55.112
      [13] 董晨钟, 符彦飙.高离化态Cu18+离子的双电子复合及共振转移激发过程的理论研究. 必威体育下载 , 2006, 55(1): 107-111.doi:10.7498/aps.55.107
      [14] 易有根, 郑志坚, 颜君, 李萍, 方泉玉, 邱玉波.Au激光等离子体的双电子复合速率系数. 必威体育下载 , 2002, 51(12): 2740-2744.doi:10.7498/aps.51.2740
      [15] 盛勇, 蒋刚, 朱正和.类氢类氦类锂镁离子双电子复合的旁观电子角动量研究. 必威体育下载 , 2002, 51(3): 501-505.doi:10.7498/aps.51.501
      [16] 焦荣珍, 程新路, 杨向东, 朱俊.类镍Dy38+离子的双电子复合速率研究. 必威体育下载 , 2002, 51(8): 1755-1758.doi:10.7498/aps.51.1755
      [17] 杨震华, 武玉璞.储存环光速调管自由电子激光的电子束能量调制. 必威体育下载 , 1997, 46(2): 279-286.doi:10.7498/aps.46.279
      [18] 陈式刚, 王文杰, 王光瑞.储存环型自由电子激光器光场混沌的控制. 必威体育下载 , 1995, 44(6): 862-871.doi:10.7498/aps.44.862
      [19] 吴关洪, 王蕴玉, 唐孝威.用Ge(Li)探测器测量正电子3γ湮没. 必威体育下载 , 1983, 32(3): 417-422.doi:10.7498/aps.32.417
      [20] 李家明.双电子复合逆过程的多通道理论. 必威体育下载 , 1983, 32(1): 84-91.doi:10.7498/aps.32.84
    计量
    • 文章访问数:1360
    • PDF下载量:154
    • 被引次数:0
    出版历程
    • 收稿日期:2024-01-31
    • 修回日期:2024-04-03
    • 上网日期:2024-05-08
    • 刊出日期:2024-06-20

      返回文章
      返回
        Baidu
        map