-
近年来单结太阳能电池的光电转换效率逐步提高, 但其最高效率受到Shockley-Queisser (SQ)极限的限制. 为了超越SQ极限, 学者们提出了叠层太阳能电池. 本工作结合第一性原理计算和SCAPS-1D器件模拟对黄铜矿化合物CuGaSe 2/CuInSe 2叠层太阳能电池进行了系统的理论研究. 首先通过第一性原理计算获取了CuGaSe 2(CGS)的微观电子结构、缺陷特性及对应的宏观性能参数, 作为后续器件模拟CGS太阳能电池的输入参数. 随后采用SCAPS-1D软件分别对单结CGS与CuInSe 2(CIS)太阳能电池进行了仿真模拟. 单结CIS太阳能电池的模拟结果与实验值具有良好的一致性. 对单结CGS电池而言, 在短路电流( J sc)最高的生长环境下进一步模拟发现, 将电子传输层(ETL)换为ZnSe后可提高CGS太阳能电池的开路电压( V oc)和PCE. 最后, 将优化后的CGS与CIS太阳能电池进行了两端(2T)单片串联的器件模拟, 结果显示在生长环境为富Cu、富Ga、贫Se, 生长温度为700 K时, 2T单片CGS/CIS叠层太阳能电池的PCE最高为28.91%, 高于当前最高的单结太阳能电池效率, 展现出良好的应用前景.
-
关键词:
- 第一性原理计算/
- SCAPS-1D/
- p型吸收层材料CuGaSe2/
- 叠层太阳能电池
Solar cells have attracted much attention, for they can convert solar energy directly into electric energy, and have been widely utilized in manufacturing industry and people’s daily life. Although the power conversion efficiency (PCE) of single-junction solar cells has gradually improved in recent years, its maximum efficiency is still limited by the Shockley-Queisser (SQ) limit of single-junction solar cells. To exceed the SQ limit and further obtain high-efficiency solar cells, the concept of tandem solar cells has been proposed. In this work, the chalcopyrite CuGaSe 2/CuInSe 2tandem solar cells are studied systematically in theory by combining first-principle calculations and SCAPS-1D device simulations. Firstly, the electronic structure, defect properties and corresponding macroscopic performance parameters of CuGaSe 2(CGS) are obtained by first-principles calculations, and are used as input parameters for subsequent device simulations of CGS solar cells. Then, the single-junction CGS and CuInSe 2(CIS) solar cells are simulated by using SCAPS-1D software, respectively. The simulation results for the single junction CIS solar cells are in good agreement with the experimental values. For single-junction CGS cells, the device simulations reveal that the CGS single-junction solar cells have the highest short-circuit current ( J sc) and PCE under the Cu-rich, Ga-rich and Se-poor chemical growth condition. Further optimization in the growth environment with the highest short circuit current ( J sc) shows that the open-circuit voltage ( V oc) and PCE of CGS solar cells can be improved by replacing the electron transport layer (ETL) with ZnSe. Finally, after the optimized CGS and CIS solar cells are connected in series with two-terminal (2T) monolithic tandem solar cell, the device simulation results show that under the growth temperature of 700 K and the growth environment of Cu-rich, Ga-rich, and Se-poor, with ZnSe serving as the ETL, the CGS thickness of 2000 nm and the CIS thickness of 1336 nm, the PCE of 2T monolithic CGS/CIS tandem solar cell can reach 28.91%, which is higher than the ever-recorded efficiency of the current single-junction solar cells, and shows that this solar cell has a good application prospect.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] -
参数 CuInSe2[55] CuGaSe2[56–58] CdS[56,59] ZnO[56,60] Al:ZnO[61] 厚度/nm 3000 2000 50 70 200 带隙/eV 1.04 1.70 2.40 3.30 3.30 电子亲和能/eV 4.5 3.9 4.2 4.6 4.6 介电常数 13.6 10.6 10.0 9.0 9.0 导带有效态密度/(1018cm–3) 2.20 1.31 2.20 2.20 2.20 价带有效态密度/(1018cm–3) 18.00 9.14 18.00 18.00 18.00 电子迁移率/(cm·V–1·s–1) 10 100 100 100 100 空穴迁移率/(cm·V–1·s–1) 10 25 25 25 25 施主浓度/(1017cm–3) 0 0 1 10 1000 受主浓度/(1016cm–3) 2 变量 0 0 0 缺陷类型 中性 变量 中性 中性 单受主(–/0) 电子俘获截面/(10–17cm2) 10000 1 1 100 100 空穴俘获截面/(10–15cm2) 1 1 1000 1000 1 能量分布 单一 单一 单一 单一 单一 缺陷能级Et的参考 高于最高价带能级 高于最高价带能级 高于最高价带能级 高于最高价带能级 高于最高价带能级 相对于参考能级的能量/eV 0.6 变量 0.6 0.6 0.6 缺陷浓度/(1015cm–3) 1 变量 100 100 10 参数 TiO2[66–68] SnO2[49,69,70] ZnSe[67,71,72] 厚度/nm 30 50 50 带隙/eV 3.20 3.60 2.67 电子亲和能/eV 3.90 4.00 4.09 介电常数 9.0 9.0 8.6 导带有效态密度/(1017cm–3) 10000 2.2 22 价带有效态密度/(1017cm–3) 2000 2.2 180 电子迁移率/(cm·V–1·s–1) 20 200 400 空穴迁移率/(cm·V–1·s–1) 10 80 110 施主浓度/(1019cm–3) 1 1 1 受主浓度/cm–3 0 0 0 缺陷类型 中性 中性 中性 电子俘获截面/(10–15cm2) 1 1 1 空穴俘获截面/(10–15cm2) 1 1 1 能量分布 单一 单一 单一 缺陷能级Et的参考 高于最高价带能级 高于最高价带能级 高于最高价带能级 相对于参考能级的能量/eV 0.6 0.6 0.6 缺陷浓度/(1015cm–3) 1 1 1 有效质量 本工作 文献[74] 电子 m*100,m*010 0.15 0.10 m*001 0.13 0.09 电子平均有效质量 0.14 0.09 空穴 m*100,m*010 0.62 0.77 m*001 0.15 0.10 空穴平均有效质量 0.51 0.63 电池 厚度/nm 开路电压/V 短路电流
/(mA·cm–2)填充因子/% 光电转换效率/% A-600 K-CGS顶部电池 2000 1.06 20.58 85.63 18.63 CIS底部电池 1820 0.59 20.58 77.59 9.42 2T单片叠层太阳能电池 — 1.65 20.58 82.60 28.05 A-700 K-CGS顶部电池 2000 1.16 19.99 86.04 19.92 CIS底部电池 1336 0.58 19.99 76.68 8.99 2T单片叠层太阳能电池 — 1.74 19.99 83.12 28.91 A-800 K-CGS顶部电池 2000 1.22 19.39 86.40 20.35 CIS底部电池 1050 0.57 19.39 75.81 8.38 2T单片叠层太阳能电池 — 1.79 19.39 82.78 28.73 A-900 K-CGS顶部电池 2000 1.03 17.68 82.60 15.07 CIS底部电池 636 0.55 17.68 73.33 7.13 2T单片叠层太阳能电池 — 1.58 17.68 79.47 22.20 -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97]
计量
- 文章访问数:1473
- PDF下载量:64
- 被引次数:0