-
在镱原子中, 利用
$ {\rm 5d6s \; {^3D_1} \to 6s^2 \; {^1S_0}} $ 跃迁探索宇称破缺效应已经得到了深入的研究. 但是$ {\rm 5d6s\; {^3D_1}} $ 态与基态$ {\rm 6s^2 \; {^1S_0}} $ 之间的M1跃迁和超精细诱导E2跃迁很大程度上影响了宇称破缺信号的探测. 因此, 很有必要精确计算$ {\rm 5d6s\; {^3D_1}} $ 态与基态$ {\rm 6s^2\; {^1S_0}} $ 之间的M1跃迁和超精细诱导E2跃迁的跃迁概率. 本文利用多组态Dirac-Hartree-Fock理论精确计算了$ {\rm 5d6s \; {^3D_1} \to 6s^2 \; {^1S_0}} $ M1跃迁和超精细诱导$ {\rm 5d6s \; ^3D_{1,3} \to 6s^2 \; {^1S_0}} $ E2跃迁的跃迁概率. 计算时详细分析了电子关联效应对跃迁概率的影响. 此外, 还分析了不同微扰态和不同超精细相互作用对跃迁概率的影响. 本文计算的$ {\rm ^3D_{1,2,3}} $ 和$ {\rm ^1D_2} $ 态的超精细常数与实验测量结果符合得很好, 从而证明了本文所用计算模型的合理性. 结合实验测量的超精细常数和本文理论计算所得的核外电子在原子核处的电场梯度, 重新评估了$ ^{173} $ Yb原子核电四极矩$ Q = 2.89(5)\; \rm {b} $ , 评估结果与目前被推荐的结果符合得很好.-
关键词:
- 超精细诱导跃迁/
- 镱原子/
- 超精细常数/
- 多组态Dirac-Hartree-Fock方法
The parity violation effects via the$ {\mathrm{5d6s\; {^3D_1} \to 6s^2 \; {^1S_0}}} $ transition have been extensively investigated in ytterbium atoms. However, the M1 transition between the excitation state$ {\mathrm{5d6s\; {^3D_1}}} $ and the ground state$ {\mathrm{6s^2 \; {^1S_0}}} $ , as well as the hyperfine-induced E2 transition, significantly affects the detection of parity violation signal. Therefore, it is imperative to obtain the accurate transition probabilities for the M1 and hyperfine-induced E2 transitions between the excitation state${\mathrm{ 5d6s\; {^3D_1} }}$ and the ground state$ {\mathrm{6s^2\; {^1S_0}}} $ . In this work, we use the multi-configuration Dirac-Hartree-Fock theory to precisely calculate the transition probabilities for the${\mathrm{ 5d6s \; {^3D_1} \to 6s^2 \; {^1S_0} }}$ M1 and hyperfine-induced${\mathrm{ 5d6s \; ^3D_{1,3} \to 6s^2 \; {^1S_0} }}$ E2 transitions. We extensively analyze the influences of electronic correlation effects on the transition probabilities according to our calculations. Furthermore, we analyze the influences of different perturbing states and various hyperfine interactions on the transition probabilities. The calculated hyperfine constants of the e$ {\mathrm{^3D_{1,2,3}}} $ and${\mathrm{ ^1D_2}} $ states accord well with experimental measurements, validating the rationality of our computational model. By combining experimentally measured hyperfine constants with the theoretically derived electric field gradient of the extra nuclear electrons at the nucleus, we reevaluate the nuclear quadrupole moment of the$ ^{173} $ Yb nucleus as$ Q = 2. 89(5) \;\rm {b} $ , showing that our result is in excellent agreement with the presently recommended value.-
Keywords:
- hyperfine induced transition/
- Yb atom/
- hyperfine constant/
- multi-configuration Dirac-Hartree-Fock method
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] -
Models AO VO NCFs $ J = 0 $ $ J = 1 $ $ J = 2 $ $ J = 3 $ DHF 1 1 2 1 VV-1 {$ {\rm 5 d6 s} $;$ {\rm 6 s^2} $} {$ {\rm 7 s, 6 p, 6 d, 5 f, 5 g} $} 15 16 35 24 C5V-2 {$ {\rm 5 s^25 p^65 d6 s} $;$ {\rm 5 s^25 p^66 s^2} $} {$ {\rm 8 s, 7 p, 7 d, 6 f, 6 g, 6 h} $} 336 1954 4361 3213 C4V-3 $ \{{\rm 4 s^24 p^64 d^{10}4 f^{14}5 s^25 p^65 d6 s};{\rm 4 s^24 p^64 d^{10}4 f^{14}5 s^25 p^66 s^2}\} $ {$ {\rm 9 s, 8 p, 8 d, 7 f, 7 g} $} 2896 20054 49368 37668 C4V-4 $ \{\rm 4 s^24 p^64 d^{10}4 f^{14}5 s^25 p^65 d6 s; \rm 4 s^24 p^64 d^{10}4 f^{14}5 s^25 p^66 s^2 \} $ {$ {\rm 10 s, 9 p, 9 d, 8 f, 8 g, 8 h} $} 5058 35649 88596 68104 C4V-5 $ \{{\rm 4 s^24 p^64 d^{10}4 f^{14}5 s^25 p^65 d6 s}; {\rm 4 s^24 p^64 d^{10}4 f^{14}5 s^25 p^66 s^2}\} $ {$ {\rm 11 s, 10 p, 10 d, 9 f, 9 g, 9 h} $} 7822 55699 139251 107472 C4V-6 $ \{{\rm 4 s^24 p^64 d^{10}4 f^{14}5 s^25 p^65 d6 s}; {\rm 4 s^24 p^64 d^{10}4 f^{14}5 s^25 p^66 s^2} \}$ {$ {\rm 12 s, 11 p, 11 d, 10 f, 10 g, 9 h} $} 10681 76208 190245 146319 C4V-7 $ \{{\rm 4 s^24 p^64 d^{10}4 f^{14}5 s^25 p^65 d6 s}; {\rm 4 s^24 p^64 d^{10}4 f^{14}5 s^25 p^66 s^2}\} $ {$ {\rm 13 s, 12 p, 12 d, 11 f, 10 g, 9 h} $} 13213 93967 232975 177889 CC5-7 $ \cup ${$ 5{\mathrm{ s^25 p^65 d6 s}} ; \rm 5 s^25 p^6 s^2 $} {$ {\rm 13 s, 12 p, 12 d, 11 f, 10 g, 9 h} $} 154602 435843 643878 750192 MR-3 $ \cup \{{\rm 5 s^25 p^6 p^2} ; {\rm 5 s^25 p^25 d^2}; {\rm 5 s^2 5 p^46 s^26 d7 d} $ {$ {\rm 9 s, 8 p, 8 d, 7 f, 7 g, 7 h} $} 754484 2123833 3122817 3614260 $ {5 {\mathrm{s}}^25 {\mathrm{p}}^6 {\mathrm{s}}7{\mathrm{ s}}} ; {5 {\mathrm{s}}^25 {\mathrm{p}}^66 {\mathrm{d}}7 {\mathrm{s}}}; {5 {\mathrm{s}}^25 {\mathrm{p}}^45{\mathrm{ d}}6 {\mathrm{s}}^26{\mathrm{ d}}}; $ ${\rm 5 s^25 p^55 d6 s6 p}; {\rm 5 s^25 p^65 f6 p} ; {\rm 5 s^25 p^66 s6 d} $} $ {\rm ^3 D_2 \to {^1 S_0}} $ $ {\rm ^1 D_2 \to {^1 S_0}} $ Models $ \Delta E $ $ \rm{RME_{\rm L}} $ $ \rm{RME_{\rm V}} $ $ R_{\rm L} $ $ R_{\rm V} $ $ \Delta E $ $ \rm{RME_{\rm L}} $ $ \rm{RME_{\rm V}} $ $ R_{\rm L} $ $ R_{\rm V} $ DHF 21114.02 0.05 0.05 0.001 0.001 28822.95 $ - $15.05 $ - $13.59 403.87 329.46 VV-1 25010.57 2.09 2.00 3.85 3.51 26254.24 $ - $15.26 $ - $14.84 238.18 225.08 C4V-7 22406.02 1.18 1.12 0.71 0.64 26208.26 $ - $11.67 $ - $11.26 150.96 140.41 CC5-7 23171.20 0.86 0.85 0.45 0.43 28126.76 $ - $13.55 $ - $12.75 289.61 256.70 MR-3 24685.75 1.21 1.15 1.20 1.10 28313.29 $ - $12.63 $ - $12.84 260.01 232.25 Breit+QED 24553.44 1.18 1.13 1.11 1.02 28206.64 $ - $12.61 $ - $11.94 254.33 228.31 Bowers等[36] 1.12(4) Expt.[36] 1.45(7) NIST[35] 24751.95 27677.67 $ ^{171} {\mathrm{Yb}}$ $ ^{173} {\mathrm{Yb}}$ Ref. A A B $ {\rm ^3 D_1} $ Expt. $ - $2040(2) 562.8(5) 337(2) [36] $ - $2047(47) [37] $ - $2032.67(17) [38] 563(1) 335(1) [39] Theory $ - $2349 648 249 [11] 596 290 [40] 597 [41] $ - $2119.3 583.79 338.46 This work $ {\rm ^3 D_2} $ Expt. 1315(4) $ - $363.4(10) 487(5) [36] $ - $362(2) 482(22) [39] Theory 1354 $ - $373 387 [11] $ - $351 440 [40] $ - $765 [41] 1314.62 $ - $362.13 491.39 This work $ {\rm ^3 D_3} $ Expt. $ - $430(1) 909(29) [39] Theory $ - $420 728 [40] $ - $477 [41] 1626.97 $ - $448.17 836.5 This work $ {\rm ^1 D_2} $ Expt. 100(18) 1115(89) [39] Theory 131 1086 [40] 465 [41] $ - $313.87 86.46 1053.44 This work Models $ {\rm ^3 D_1} $ $ {\rm ^3 D_2} $ $ {\rm ^3 D_3} $ EFG Q EFG Q EFG Q DHF 0.23 6.09 0.32 6.47 0.55 7.07 C4V-7 0.52 2.75 0.77 2.69 1.29 2.99 CC5-7 0.43 3.26 0.63 3.27 1.10 3.52 MR-3 0.51 2.79 0.74 2.77 1.27 3.04 $ {\rm (^3 D_2, {^3 D_1})} $ $ {\rm (^1 D_2, {^3 D_1})} $ $ F' $ $ \varepsilon_{1}^{{\rm A}} $ $ \varepsilon_{1}^{{\rm B}} $ $ \varepsilon_{1} $ $ \varepsilon_{2}^{{\rm A}} $ $ \varepsilon_{2}^{{\rm B}} $ $ \varepsilon_{2} $ $ ^{171} $Yb 3/2 $ - $1.54[$ - $4] 0 $ - $1.54[$ - $4] 7.1[$ - $6] 0 7.1[$ - $6] 7/2 $ - $7.36[$ - $5] $ - $5.47[$ - $6] $ - $7.91[$ - $5] 3.39[$ - $6] 4.04[$ - $8] 3.43[$ - $6] $ ^{173} $Yb 5/2 $ - $7.17[$ - $5] 3.99[$ - $6] $ - $6.77[$ - $5] 3.30[$ - $6] $ - $2.95[$ - $8] 3.27[$ - $6] 3/2 $ - $5.03[$ - $5] 7.47[$ - $6] $ - $4.28[$ - $5] 2.31[$ - $6] $ - $5.53[$ - $8] 2.26[$ - $6] $ {\rm (^3 D_2, {^3 D_3})} $ $ {\rm (^1 D_2, {^3 D_3})} $ $ F' $ $ \varepsilon_{1}^{{\rm A}} $ $ \varepsilon_{1}^{{\rm B}} $ $ \varepsilon_{1} $ $ \varepsilon_{2}^{{\rm A}} $ $ \varepsilon_{2}^{{\rm B}} $ $ \varepsilon_{2} $ $ ^{171} $Yb 5/2 5.28[$ - $5] 0 5.28[$ - $5] –1.37[$ - $5] 0 $ - $1.37[$ - $5] 9/2 2.35[$ - $5] 2.56[$ - $6] 2.61[$ - $5] $ - $6.13[$ - $6] $ - $3.78[$ - $8] $ - $6.17[$ - $6] 7/2 2.54[$ - $5] $ - $3.46[$ - $7] 2.51[$ - $5] $ - $6.61[$ - $6] 5.1[$ - $9] $ - $6.61[$ - $6] $ ^{173} $Yb 5/2 2.21[$ - $5] $ - $2.41[$ - $6] 1.97[$ - $5] $ - $5.76[$ - $6] 3.55[$ - $8] $ - $5.73[$ - $6] 3/2 1.61[$ - $5] $ - $2.84[$ - $6] 1.32[$ - $5] $ - $4.81[$ - $6] 4.19[$ - $8] $ - $4.14[$ - $6] 1/2 8.40[$ - $6] $ - $1.83[$ - $6] 6.57[$ - $5] $ - $2.19[$ - $6] 2.7[$ - $8] $ - $2.16[$ - $6] $ R_1 $ $ R_3 $ Total $ F' $ $ T_1 $ $ T_2 $ $ T_1 $ $ T_2 $ 3/2 1.09[$ - $8] 0 2.64[$ - $9] 0 2.42(23)[$ - $8] 7/2 2.48[$ - $9] 1.37[$ - $11] 6.00[$ - $10] 8.53[$ - $14] 6.13(60)[$ - $9] 5/2 2.35[$ - $9] 7.29[$ - $12] 5.69[$ - $10] 4.55[$ - $14] 4.82(47)[$ - $9] 3/2 1.16[$ - $9] 2.55[$ - $11] 2.80[$ - $10] 1.60[$ - $13] 2.05(20)[$ - $9] $ R_1' $ $ R_3' $ Total $ F' $ $ T_1 $ $ T_2 $ $ T_1 $ $ T_2 $ 5/2 6.41[$ - $10] 0 4.96[$ - $9] 0 9.16(89)[$ - $9] 9/2 1.27[$ - $10] 1.51[$ - $12] 9.85[$ - $10] 3.75[$ - $14] 1.94(18)[$ - $9] 7/2 1.48[$ - $10] 2.74[$ - $14] 1.15[$ - $9] 6.82[$ - $16] 2.10(20)[$ - $9] 5/2 1.12[$ - $10] 1.33[$ - $12] 8.70[$ - $10] 3.30[$ - $14] 1.50(14)[$ - $9] 3/2 5.92[$ - $11] 1.85[$ - $12] 4.58[$ - $10] 4.60[$ - $14] 7.58(74)[$ - $10] 1/2 1.62[$ - $11] 7.68[$ - $13] 1.25[$ - $10] 1.91[$ - $14] 2.02(19)[$ - $10] IF Ref. 1/2, 3/2 5/2, 3/2 5/2, 5/5 5/2, 7/2 $ E2_{\rm A} $ 6.43[$ - $4] $ - $3.63[$ - $4] 6.34[$ - $4] $ - $7.52[$ - $4] Kozlov[11] 1.62[$ - $4] $ - $0.53[$ - $4] 9.26[$ - $5] $ - $1.09[$ - $4] This work $ E2_{\rm B} $ 0 $ - $3.90[$ - $5] 2.10[$ - $5] 2.80[$ - $5] Kozlov[11] 0 $ - $7.88[$ - $6] 5.16[$ - $6] 8.16[$ - $6] This work $ E2_{{\rm tot}} $ 6.40(1.0)[$ - $4] $ - $4.00(60)[$ - $4] 6.60(1.0)[$ - $4] $ - $7.20(1.2)[$ - $4] Kozlov[11] 1.62(6)[$ - $4] $ - $4.50(20)[$ - $5] 9.76(41)[$ - $5] $ - $1.01(4)[$ - $4] This work -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46]
计量
- 文章访问数:1589
- PDF下载量:86
- 被引次数:0