搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

陈崇, 马铭远, 潘峰, 宋成

Magneto-acoustic coupling: Physics, materials, and devices

Chen Chong, Ma Ming-Yuan, Pan Feng, Song Cheng
PDF
HTML
导出引用
  • 固体中的声波有两种传播方式: 一种是声体波, 以纵波或横波的形式在固体内部传播; 另一种是声表面波, 在固体表面产生并沿着表面传播. 声波射频技术利用这些声波来截取和处理信号, 尤其体现在快速发展的射频滤波器技术中. 声学滤波器因其体积小、成本低和性能稳定等多方面的优势, 在移动通信等领域得到了广泛应用. 受益于成熟的制造工艺和确定的共振频率, 声波已逐渐成为操控磁性和自旋的有力手段, 这一领域正朝着小型化、超快和节能的自旋电子学器件应用迈进. 将磁性材料集成到声学射频器件, 也开辟了对声学器件调控方法和性能提升的新思路. 本综述首先梳理了各种磁声耦合的物理机制, 并在此基础上系统介绍了声控磁化动力学、磁化翻转、磁畴和磁性斯格明子产生及运动、自旋流产生等一系列磁性和自旋现象. 同时也讨论了声控磁的逆过程——磁控声波的研究进展, 包括声波参数的磁调控和声波的非互易传播, 以及基于此开发的新型磁声器件, 如磁传感器、磁电天线、可调谐滤波器等. 最后展望了磁声耦合未来可能的研究方向和潜在的应用前景.
    Acoustic wave in solid has two modes of propagation: the bulk acoustic wave (BAW), which propagates inside solid in the form of longitudinal or transverse wave, and the surface acoustic wave (SAW), which is generated on the surface of solid and propagates along the surface. In acoustic radio frequency (RF) technologies acoustic waves are used to intercept and process RF signals, which are typified by the rapidly developing RF filter technology. Acoustic filter has the advantages of small size, low cost, steady performance and simple fabrication, and is widely used in mobile communication and other fields. Due to the mature fabrication process and well-defined resonance frequency of acoustic device, acoustic wave has become an extremely intriguing way to manipulate magnetism and spin current, with the goal of pursuing miniaturized, ultra-fast, and energy-efficient spintronic device applications. The integration of magnetic materials into acoustic RF device also provides a new way of thinking about the methods of acoustic device modulation and performance enhancement. This review first summarizes various physical mechanisms of magneto-acoustic coupling, and then based on these mechanisms, a variety of magnetic and spin phenomena such as acoustically controlled magnetization dynamics, magnetization switching, magnetic domain wall and magnetic skyrmions generation and motion, and spin current generation are systematically introduced. In addition, the research progress of magnetic control of acoustic wave, the inverse process of acoustic control of magnetism, is discussed, including the magnetic modulation of acoustic wave parameters and nonreciprocal propagation of acoustic waves, as well as new magneto-acoustic devices developed based on this, such as SAW-based magnetic field sensors, magneto-electric antennas, and tunable filters. Finally, the possible research objectives and applications of magneto-acoustic coupling in the future are prospected. In summary, the field of magneto-acoustic coupling is still in a stage of rapid development, and a series of groundbreaking breakthroughs has been made in the last decades, and the major advances are summarized in this field. The field of magneto-acoustic coupling is expected to make further significant breakthroughs, and we hope that this review will further promote the researches of physical phenomena of the coupling between magnetism and acoustic wave, spin and lattice, and potential device applications as well.
        通信作者:宋成,songcheng@mail.tsinghua.edu.cn
      • 基金项目:国家重点研发计划(批准号: 2022YFA1402603)、国家自然科学基金(批准号: 52225106, 12241404)和北京市自然科学基金(批准号: JQ20010)资助的课题.
        Corresponding author:Song Cheng,songcheng@mail.tsinghua.edu.cn
      • Funds:Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1402603), the National Natural Science Foundation of China (Grant Nos. 52225106, 12241404), and the Natural Science Foundation of Beijing, China (Grant No. JQ20010).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

    • 研究内容 材料体系 耦合机制 中心频率f/GHz 进展
      声控磁化
      动力学
      Ni[1] 磁弹耦合 2.24 首次实验观测
      Ni[5] 1.725 纵漏波驱动
      Ni[6] 3.47 水平剪切波驱动, 具有不同的角度依赖性
      Ni19Fe81[8] 旋磁耦合 1.3—2.1 旋磁耦合驱动
      Ni[9] 磁弹耦合 7.8—9.8 光学激发和探测, 表征阻尼因子
      Ni/Co[10] 1.429 NV色心探测
      Ni[11] 3.56 BLS成像
      Ni[12] 0.1—2.5 XMCD-PEEM成像
      Ni[13] 1.97—3.23 直流电学探测
      声控磁
      化翻转
      FeGa[14] 磁弹耦合(非共振) 0.158 降低矫顽力
      (Ga, Mn)(As, P)[15] 0.549 矫顽力降低60%
      (Ga, Mn)As[16] 0.99 无场翻转
      Pt/Co/Ta[17] 0.076 SAW辅助SOT翻转, 临界翻转电流密度降低
      隧道结[18] 磁弹耦合 11—18 模拟SAW辅助STT翻转
      声控畴
      壁运动
      Fe70Ga18B12[19] 磁弹耦合(非共振) 4.23 微磁学模拟, 畴壁运动速度上限50 m/s
      [Co/Pt]多层膜[20] 0.097 SAW驻波使畴壁运动速度提高1个量级
      Pt/Co/Ta[21] 0.048 区分热效应和磁弹耦合对畴壁运动的贡献
      声控斯
      格明子
      Pt/Co/Ir[22] 磁弹耦合(非共振) 0.23, 0.40 斯格明子的产生
      [Co/Pd]多层膜[23] 0.366 纵漏波驱动斯格明子的有序产生和运动
      声波产生
      自旋流
      Co/Pt[24] 磁弹耦合 1.548 声自旋泵浦, 逆自旋霍尔效应探测
      Ni/Cu(Ag)/Bi2O3[25] 声自旋泵浦, 逆Edelstein效应探测
      Ni/Cu/Bi2O3[26] 2.86 谐振腔增强声自旋泵浦, 自旋流产生能力提高3倍
      Ni81Fe19/Cu[27] 自旋-旋转耦合 1.59 瑞利波产生纯自旋流(σy)
      Ni81Fe19/Cu[28] 0.666 水平剪切波产生纯自旋流(σxσz)
      声波的非
      互易传播
      Ni[29] 磁弹耦合 2.24 切应变与正应变耦合, 隔离度0.05 dB/mm
      Fe3Si[30] 3.455 切应变与正应变耦合, 隔离度0.8 dB/mm
      Ni/Si[31] 1.85 切应变与正应变耦合, 非互易性可调,
      隔离度0.03 dB/mm
      Ta/CoFeB/MgO[32] 磁-旋转耦合 6.1 旋转应变与正应变耦合, 非互易性100%
      CoFeB/Pt[33] 磁弹耦合 6.77 界面DMI诱导的非互易, 隔离度27.9 dB/mm
      FeGaB/Al2O3/FeGaB[34] 1.435 偶极耦合诱导的非互易, 隔离度22 dB/mm
      Co40Fe40B20/Au/Ni81Fe19[35] 6.87 偶极耦合诱导的非互易, 隔离度74 dB/mm
      CoFeB/Ru/CoFeB[36] 1.4 RKKY耦合诱导的非互易, 隔离度37 dB/mm
      Pt/Co/Ru/Co/Pt[37] 6.77 RKKY耦合和DMI诱导的非互易, 隔离度3 dB/mm
      CoFeB/Ru/CoFeB[38] 5.08 RKKY耦合诱导的非互易, 隔离度250 dB/mm
      磁传感器 FeCoSiB[39] 磁电耦合 0.148 SAW延迟线结构激发勒夫波, 10 Hz下
      70 pT/Hz1/2的探测极限
      FeCoSiB[40] 0.477 SAW谐振器结构激发勒夫波, 灵敏度630.4 kHz/Oe
      磁电天线 AlN/FeGaB[41] 磁电耦合 2.53 FBAR结构, 首次实验验证可行性,
      增益 –18 dBi, 辐射效率0.4%
      ZnO/FeGaB[42] 1.75 SMR结构, 增益–18.8 dBi, 功率耐受性30.4 dBm
      可调谐
      滤波器
      AlN/FeGaB[43] 磁电耦合 0.093 磁场频率可调性50 Hz/μT, 电场频率可调性2.3 kHz/V
      注: “—”表示未报道,σi(i=x,y,z)表示i方向极化的自旋流.
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

    • [1] 夏永顺, 杨晓阔, 豆树清, 崔焕卿, 危波, 梁卜嘉, 闫旭.基于磁性隧道结和双组分多铁纳磁体的超低功耗磁弹模数转换器. 必威体育下载 , 2024, 73(13): 137502.doi:10.7498/aps.73.20240129
      [2] 黄铭贤, 胡文彬, 白飞明.声表面波-自旋波耦合及磁声非互易性器件. 必威体育下载 , 2024, 73(15): 158501.doi:10.7498/aps.73.20240462
      [3] 姚霄, 刘伟强, 谭建国.高速飞行器磁控阻力特性. 必威体育下载 , 2018, 67(17): 174702.doi:10.7498/aps.67.20180478
      [4] 胡杨凡, 万学进, 王彪.磁性斯格明子晶格的磁弹现象与机理. 必威体育下载 , 2018, 67(13): 136201.doi:10.7498/aps.67.20180251
      [5] 张志东.磁性材料的磁结构、磁畴结构和拓扑磁结构. 必威体育下载 , 2015, 64(6): 067503.doi:10.7498/aps.64.067503
      [6] 王颜, 杨玖, 王丽丹, 段书凯.基于串并联磁控忆阻器的耦合行为研究. 必威体育下载 , 2015, 64(23): 237303.doi:10.7498/aps.64.237303
      [7] 洪庆辉, 曾以成, 李志军.含磁控和荷控两种忆阻器的混沌电路设计与仿真. 必威体育下载 , 2013, 62(23): 230502.doi:10.7498/aps.62.230502
      [8] 章鹏, 刘琳, 陈伟民.磁性应力监测中力磁耦合特征及关键影响因素分析. 必威体育下载 , 2013, 62(17): 177501.doi:10.7498/aps.62.177501
      [9] 胡明, 万树德, 钟雷, 刘昊, 汪海.磁控直流辉光等离子体放电特性. 必威体育下载 , 2012, 61(4): 045201.doi:10.7498/aps.61.045201
      [10] 郭展, 范飞, 白晋军, 牛超, 常胜江.基于磁光子晶体的磁控可调谐太赫兹滤波器和开关. 必威体育下载 , 2011, 60(7): 074218.doi:10.7498/aps.60.074218
      [11] 李阳平, 刘正堂, 刘文婷, 闫 峰, 陈 静.GeC薄膜的射频磁控反应溅射制备及性质. 必威体育下载 , 2008, 57(10): 6587-6592.doi:10.7498/aps.57.6587
      [12] 毕海星, 周云松, 赵丽明, 王福合.光子晶体中的磁控光子开关线路. 必威体育下载 , 2008, 57(9): 5718-5721.doi:10.7498/aps.57.5718
      [13] 王 漪, 孙 雷, 韩德栋, 刘力锋, 康晋锋, 刘晓彦, 张 兴, 韩汝琦.ZnCoO稀磁半导体的室温磁性. 必威体育下载 , 2006, 55(12): 6651-6655.doi:10.7498/aps.55.6651
      [14] 沈自才, 邵建达, 王英剑, 范正修.磁控反应溅射法制备渐变折射率薄膜的模型分析. 必威体育下载 , 2005, 54(10): 4842-4845.doi:10.7498/aps.54.4842
      [15] 崔玉亭, 陈京兰, 刘国栋, 吴光恒, 廖克俊, 王万录.Ni50.5Mn24.5G25单晶的预马氏体相变特性. 必威体育下载 , 2005, 54(1): 263-268.doi:10.7498/aps.54.263
      [16] 冯 倩, 黄志高, 都有为.磁性多层膜磁特性的表面效应. 必威体育下载 , 2003, 52(11): 2906-2911.doi:10.7498/aps.52.2906
      [17] 周青春, 王嘉赋, 徐荣青.自旋-轨道耦合对磁性绝缘体磁光Kerr效应的影响. 必威体育下载 , 2002, 51(7): 1639-1644.doi:10.7498/aps.51.1639
      [18] 邵元智, 林光明, 蓝图, 钟伟荣.基于交换耦合模型纳米双相(硬磁/软磁)自旋体系的磁性. 必威体育下载 , 2002, 51(10): 2362-2368.doi:10.7498/aps.51.2362
      [19] 张鹏翔, 曹克定.静磁波法研究材料的磁性. 必威体育下载 , 1985, 34(11): 1407-1412.doi:10.7498/aps.34.1407
      [20] 李荫远, 冷忠昂, 潘守甫.磁声参量振荡的理论. 必威体育下载 , 1960, 16(8): 448-461.doi:10.7498/aps.16.448
    计量
    • 文章访问数:3066
    • PDF下载量:324
    • 被引次数:0
    出版历程
    • 收稿日期:2023-12-04
    • 修回日期:2024-01-01
    • 上网日期:2024-01-16
    • 刊出日期:2024-03-05

      返回文章
      返回
        Baidu
        map