\begin{document}${\text{CO}}_2^ - $\end{document}, \begin{document}${\mathrm{OC}}{{\mathrm{S}}^ - }$\end{document}, \begin{document}$ {\mathrm{C}}{\text{S}}_2^ - $\end{document}进行高精度的从头算研究. 我们计算了这些分子在一系列相关一致基组aug-cc-pV(X+d)Z (X = T, Q, 5) 以及完全基组极限下的基态平衡几何结构, 并研究了芯-价电子相关与标量相对论效应的影响, 计算结果与已有文献报道结果吻合较好. 基于计算的几何结构, 获得了中性分子CO2, OCS, CS2的绝热电子亲和能, 系统考察了不同基组以及零点能修正对这些分子电子亲和能的影响, 给出了考虑各种修正下3种分子准确的电子亲和能. 本文将丰富含碳三原子分子的光谱常数和电子亲和能等分子参数的信息, 可为实验光谱研究提供重要参考."> - 必威体育下载

搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    单石敏, 连艺, 徐海峰, 闫冰

    Computational study on structure and electron affinities of carbon-containing triatomic molecules

    Shan Shi-Min, Lian Yi, Xu Hai-Feng, Yan Bing
    PDF
    HTML
    导出引用
    • 本文分别采用单、双和微扰处理三激发耦合簇方法与自旋非限制的开壳层耦合簇方法对CO 2, OCS, CS 2及其对应阴离子 ${\text{CO}}_2^ - $ , ${\mathrm{OC}}{{\mathrm{S}}^ - }$ , $ {\mathrm{C}}{\text{S}}_2^ - $ 进行高精度的从头算研究. 我们计算了这些分子在一系列相关一致基组aug-cc-pV( X+d)Z ( X= T, Q, 5) 以及完全基组极限下的基态平衡几何结构, 并研究了芯-价电子相关与标量相对论效应的影响, 计算结果与已有文献报道结果吻合较好. 基于计算的几何结构, 获得了中性分子CO 2, OCS, CS 2的绝热电子亲和能, 系统考察了不同基组以及零点能修正对这些分子电子亲和能的影响, 给出了考虑各种修正下3种分子准确的电子亲和能. 本文将丰富含碳三原子分子的光谱常数和电子亲和能等分子参数的信息, 可为实验光谱研究提供重要参考.
      The accurate measurement and calculation of molecular electron affinity has been a hot topic. The existing theoretical study does not consider the effects of different basic sets, or various correlation effects or zero point energy correction. In addition, there are some deviations of calculation results from experimental measurements. Therefore, we conduct a high-level ab initiostudy on the electron affinities of CO 2, OCS, CS 2and their corresponding anions $ {\text{CO}}_{2}^{{ - }} $ , OCS , $ {\text{CS}}_{2}^{{ - }} $ by adopting the coupled cluster with singles and doubles (triples) (CCSD(T)), spin-unrestricted open-shell coupled cluster with singles and doubles (triples) (UCCSD(T)), respectively. The equilibrium geometries of the ground states of these molecules are calculated under a series of extended correlation consistent basis sets aug-cc-pV ( X+ d)Z ( X= T, Q, 5) and complete basis set extrapolation (CBS) limit. The effects of core-valence (CV) electron correlation and scalar relativistic (SR) on equilibrium geometry of the ground state are studied, and our results are compared with previous experimental observations and theoretical data. Our calculations are in good agreement with the previous results. It is found that the calculations of equilibrium geometries of these molecules tend to converge. It is noted that the scalar relativistic effect has little influence on the equilibrium structure of the neutral molecule, but it has more significant influence on the bond angle of $ {\text{CS}}_{2}^{{ - }} $ .With the increase of atomic number, the core-valence correlation effect exerts a more remarkable influence on the equilibrium structures of ground states of CS 2and $ {\text{CS}}_{2}^{{ - }} $ molecules except for R C-Sof OCS . Based on accurate structures, the adiabatic energy values of neutral molecules CO 2, OCS, CS 2by CCSD(T) method and those of $ {\text{CO}}_{2}^{{ - }} $ , OCS , $ {\text{CS}}_{2}^{{ - }} $ by using UCCSD(T) and spin-restricted open-shell coupled cluster with singles and doubles (triples) (RCCSD(T)) are calculated, respectively. And finally, the adiabatic electron affinities (EAs) of the neutral molecules CO 2, OCS, CS 2are obtained. The effects of different basis sets, CBS, correlation effects and zero-point energy correction on the EA values of these molecules are investigated. It is found that both the scalar relativistic effect and the core-valence correlation effect affect the EAs of neutral molecules, and the core-valence correlation effect has a more significant effect on the EA value. The results show that the correlation effect has more significant influence on the adiabatic EA than the equilibrium structure of the ground state of neutral molecules. Based on the CBS+ΔCV+ΔDK+ΔZPE calculation, accurate EA information is acquired. Our results of EA values are within the experimental error. This work will enrich the information about spectral constants and electron affinities of carbon-containing triatomic molecules, and provide an important reference for experimental spectral analysis.
          通信作者:徐海峰,xuhf@jlu.edu.cn; 闫冰,yanbing@jlu.edu.cn
        • 基金项目:国家自然科学基金(批准号: 11874177, 12174148, 12274178)和山西省基础研究计划(批准号: 202203021212116)资助的课题.
          Corresponding author:Xu Hai-Feng,xuhf@jlu.edu.cn; Yan Bing,yanbing@jlu.edu.cn
        • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. 11874177, 12174148, 12274178) and the Fundamental Research Program of Shanxi Province, China (Grant No. 202203021212116).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

      • AV(T+d)Z AV(Q+d)Z AV(5+d)Z CBS
        CO2 RC-O 1.167 1.163 1.162 1.162
        ${\text{CO}}_2^ - $ RC-O 1.237 1.232 1.231 1.230
        ∠OCO/(°) 137.6 137.7 137.8 137.9
        OCS RC-O 1.163 1.159 1.158 1.158
        RC-S 1.571 1.567 1.566 1.565
        ${\mathrm{OCS}}^{ - } $ RC-O 1.214 1.210 1.209 1.208
        RC-S 1.710 1.705 1.703 1.701
        ∠OCS/(°) 136.5 136.4 136.5 136.5
        CS2 RC-S 1.562 1.558 1.557 1.555
        $ {\text{CS}}_{2}^{{ - }} $ RC-S 1.641 1.636 1.634 1.633
        ∠SCS/(°) 143.3 143.5 143.6 143.7
        下载: 导出CSV

        本工作计算结果 其他计算结果 实验结果
        CBS ΔCV ΔDK Total
        CO2 RC-O 1.162 –0.002 0 1.160 1.143[19]/1.179[19]/1.1614[20]/1.164[20]/1.167[21] 1.162[13]
        $ {\text{CO}}_{2}^{{ - }} $ RC-O 1.230 –0.002 0 1.228 1.225[19]/1.256[19]/1.230[20]/1.233[20]/1.237[21] 1.25[14]
        ∠OCO/(°) 137.9 0.1 0 138.0 135[19]/134.2[19]/137.9[20]/137.7[20]/136.7[21] 134[15]
        OCS RC-O 1.158 –0.002 0 1.156 1.158[20]/1.161[20])/1.163[21] 1.156[16]
        RC-S 1.565 –0.003 0 1.562 1.566[20]/1.563[20]/1.575[21] 1.561[16]
        ${\mathrm{OCS}}^{ - } $ RC-O 1.208 –0.002 0 1.206 1.208[20]/1.209[20]/1.213[21]
        RC-S 1.701 –0.005 0 1.696 1.704[20]/1.707[20]/1.716[21]
        ∠OCS/(°) 136.5 0.1 0 136.6 136.5[20]/136.3[20]/136.2[21]
        CS2 RC-S 1.555 –0.003 0 1.552 1.558[20]/1.557[20]/1.565[21] 1.556[17]
        $ {\text{CS}}_{2}^{{ - }} $ RC-S 1.633 –0.004 0 1.629 1.635[20]/1.630[20]/1.646[21]
        ∠SCS/(°) 143.7 0.2 –0.1 143.8 144[20]/145.2[20]/142.7[21] 141[18]
        下载: 导出CSV

        绝热电子亲和能/eV
        UCCSD(T) RCCSD(T)
        AV(T+d)Z –0.631 –0.654
        AV(Q+d)Z –0.630 –0.653
        AV(5+d)Z –0.624 –0.648
        Q5-CBS –0.616 –0.640
        TQ5-CBS –0.619 –0.643
        ΔCV –0.012
        ΔDK –0.003
        ΔZPE 0.090
        Total –0.541a)/–0.544b) –0.565a)/–0.568b)
        Experiment –0.6 ± 0.2[4]/–0.44±0.2[5]
        Calculation –0.36[22]/–0.669[20]/–0.544[21]
        注:a)Q5-CBS+ΔCV+ΔDK+ΔZPE result.
        b)TQ5-CBS+ΔCV+ΔDK+ΔZPE result.
        下载: 导出CSV

        绝热电子亲和能/eV
        UCCSD(T) RCCSD(T)
        AV(T+d)Z 0.359 0.337
        AV(Q+d)Z 0.399 0.377
        AV(5+d)Z 0.407 0.384
        Q5-CBS 0.417 0.394
        TQ5-CBS 0.412 0.389
        ΔCV –0.013
        ΔDK –0.009
        ΔZPE 0.053
        Total 0.448a)/0.443b) 0.425a)/0.420b)
        Experiment 0.6 ± 0.1[7]/≤0.8[10]/0.58±0.05[11]/
        0.5525(13)[12]
        Calculation 0.406[20]/0.382[20]/0.457[21]/0.54[11]
        注:a)Q5-CBS+ΔCV+ΔDK+ΔZPE result.
        b)TQ5-CBS+ΔCV+ΔDK+ΔZPE result.
        下载: 导出CSV

        绝热电子亲和能/eV
        UCCSD(T) RCCSD(T)
        AV(T+d)Z –0.098 –0.119
        AV(Q+d)Z –0.073 –0.095
        AV(5+d)Z –0.069 –0.091
        Q5-CBS –0.062 –0.0839
        TQ5-CBS –0.066 –0.0876
        ΔCV –0.016
        ΔDK –0.004
        ΔZPE 0.070
        Total –0.012a)/–0.016b) –0.034a)/–0.038b)
        Experiment 0.46±0.2[4]/–0.04[6]
        Calculation –0.007[21]/–0.059±0.061[24]
        注:a)Q5-CBS+ΔCV+ΔDK+ΔZPE result.
        b)TQ5-CBS+ΔCV+ΔDK+ΔZPE result.
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

      • [1] 彭亚晶, 蒋艳雪.分子空位缺陷对环三亚甲基三硝胺含能材料几何结构、电子结构及振动特性的影响. 必威体育下载 , 2015, 64(24): 243102.doi:10.7498/aps.64.243102
        [2] 阮文, 谢安东, 余晓光, 伍冬兰.NaBn(n=19)团簇的几何结构和电子性质. 必威体育下载 , 2012, 61(4): 043102.doi:10.7498/aps.61.043102
        [3] 孙建敏, 赵高峰, 王献伟, 杨雯, 刘岩, 王渊旭.Cu吸附(SiO3)n(n=1—8)团簇几何结构和电子性质的密度泛函研究. 必威体育下载 , 2010, 59(11): 7830-7837.doi:10.7498/aps.59.7830
        [4] 冯海冉, 李鹏, 郑雨军, 丁世良.用李代数方法解析研究线性三原子分子振动的动力学纠缠. 必威体育下载 , 2010, 59(8): 5246-5250.doi:10.7498/aps.59.5246
        [5] 金蓉, 谌晓洪.密度泛函理论对ZrnPd团簇结构和性质的研究. 必威体育下载 , 2010, 59(10): 6955-6962.doi:10.7498/aps.59.6955
        [6] 刘立仁, 雷雪玲, 陈杭, 祝恒江.Bn(n=2—15)团簇的几何结构和电子性质. 必威体育下载 , 2009, 58(8): 5355-5361.doi:10.7498/aps.58.5355
        [7] 冯海冉, 丁世良.线性三原子分子振动激发控制的李代数方法. 必威体育下载 , 2008, 57(3): 1626-1631.doi:10.7498/aps.57.1626
        [8] 任凤竹, 王渊旭, 田付阳, 赵文杰, 罗有华.密度泛函理论研究ZrnCo(n=1—13)团簇的结构和磁性. 必威体育下载 , 2008, 57(4): 2165-2173.doi:10.7498/aps.57.2165
        [9] 任凤竹, 罗有华.BenLa (n=1—18) 团簇的结构、电子性质和磁性. 必威体育下载 , 2008, 57(12): 7623-7629.doi:10.7498/aps.57.7623
        [10] 谌晓洪, 朱正和, 高 涛, 罗顺忠.AlHn(n=1—3)的分子结构和AlH3热力学稳定性. 必威体育下载 , 2006, 55(7): 3420-3432.doi:10.7498/aps.55.3420
        [11] 毛华平, 王红艳, 朱正和, 唐永建.AunY(n=1—9)掺杂团簇的结构和电子性质研究. 必威体育下载 , 2006, 55(9): 4542-4547.doi:10.7498/aps.55.4542
        [12] 毛华平, 杨兰蓉, 王红艳, 朱正和, 唐永建.钇小团簇的结构和电离势的计算. 必威体育下载 , 2005, 54(11): 5126-5129.doi:10.7498/aps.54.5126
        [13] 毛华平, 马美仲.Aun(n=2—9)团簇的几何结构和电子特性. 必威体育下载 , 2004, 53(6): 1766-1771.doi:10.7498/aps.53.1766
        [14] 马健新, 贾 瑜, 梁二军, 王晓春, 王 飞, 胡 行.PbTe(001)表面原子几何结构和电子结构的第一性原理计算. 必威体育下载 , 2003, 52(12): 3155-3161.doi:10.7498/aps.52.3155
        [15] 肖奇, 邱冠周, 胡岳华, 王淀佐.FeS2(100)表面原子几何与电子结构的理论研究. 必威体育下载 , 2002, 51(9): 2133-2138.doi:10.7498/aps.51.2133
        [16] 沈汉鑫, 朱梓忠, 黄美纯.NiAl的几何与电子结构. 必威体育下载 , 2001, 50(1): 95-98.doi:10.7498/aps.50.95
        [17] 丁长庚, 杨金龙, 李群祥.钒团簇的几何和电子结构——从分子到体相性质的演化. 必威体育下载 , 2001, 50(10): 1907-1913.doi:10.7498/aps.50.1907
        [18] 罗成林, 周延怀, 张 益.镍原子团簇几何结构的紧束缚方法模拟 . 必威体育下载 , 2000, 49(1): 54-56.doi:10.7498/aps.49.54
        [19] 郑雨军, 丁世良.动力学对称群方法对三原子分子高激发振动态的理论研究. 必威体育下载 , 1999, 48(3): 438-445.doi:10.7498/aps.48.438
        [20] 谢仿卿, 黄明宝, 夏宇兴.ArCN三原子准分子的研究(Ⅰ)——电子态的量子化学计算. 必威体育下载 , 1994, 43(3): 351-355.doi:10.7498/aps.43.351
      计量
      • 文章访问数:885
      • PDF下载量:41
      • 被引次数:0
      出版历程
      • 收稿日期:2023-11-28
      • 修回日期:2024-04-06
      • 上网日期:2024-04-28
      • 刊出日期:2024-05-20

        返回文章
        返回
          Baidu
          map