\begin{document}$\nu {\mathrm{i}}_{13/2}$\end{document}\begin{document}$\nu {\mathrm{i}}_{11/2}$\end{document}自旋伙伴态, 还分析了交换项对其自旋-轨道劈裂的相关效应. 与束缚态情形相比, 共振态中自旋伙伴态的波函数可能存在显著区别, 单粒子有效势与能量也相应发生改变. 结果表明, 不仅自旋-轨道相互作用, 单粒子有效势中其他成分也是影响共振态自旋-轨道劈裂的重要因素."> - 必威体育下载

搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

杨威, 丁士缘, 孙保元

Relativistic Hartree-Fock model of nuclear single-particle resonances based on real stabilization method

Yang Wei, Ding Shi-Yuan, Sun Bao-Yuan
PDF
HTML
导出引用
  • 利用坐标空间的实稳定方法, 在相对论 Hartree-Fock (RHF)理论框架下发展了原子核单粒子共振态结构模型. 具体以 120Sn的低激发中子共振态为例, 探讨了交换项在影响共振能量、宽度以及自旋-轨道劈裂等性质中的作用. 相较于一般的相对论平均场(RMF)理论, RHF中交换项的引入改变了核介质中有效核力的动力学平衡机制, 进而影响共振态单粒子势的描述. 对于一般的宽共振态, 这可能导致相对更低的共振能量和更小的共振宽度. 此外, 对 120Sn共振态中 $\nu {\mathrm{i}}_{13/2}$ $\nu {\mathrm{i}}_{11/2}$ 自旋伙伴态, 还分析了交换项对其自旋-轨道劈裂的相关效应. 与束缚态情形相比, 共振态中自旋伙伴态的波函数可能存在显著区别, 单粒子有效势与能量也相应发生改变. 结果表明, 不仅自旋-轨道相互作用, 单粒子有效势中其他成分也是影响共振态自旋-轨道劈裂的重要因素.
    With the development of radioactive ion beam devices along with associated nuclear experimental detection technologies, the research areas in atomic nuclei have been further expanded, illustrating many new aspects of nuclear excitation as well as the physics of exotic nuclei far from the β-stability line. For weakly bound nuclei, the Fermi surface may lie near the continuum, which facilitates the easy scattering of valence nucleons into the continuum to occupy the resonance state. These continuum effects are of crucial importance in explaining the unusual structure of unstable nuclei. In this work, with the real stabilization method in coordinate space, nuclear structure model for single-particle resonances is developed within the framework of the relativistic Hartree-Fock (RHF) theory. In order to extract potential single-particle resonance structures, we study the evolution of single-particle states with box size in the continuum. To avoid the instability of nuclear binding energy, the pairing correlations are not taken into account in the calculation. As an important motivation, the roles of Fock terms in determining the energy, widths and spin-orbit splitting are discussed for low-lying neutron resonance states of $^{120}$ Sn. By comparing with the relativistic mean field (RMF) model, it is found that the inclusion of exchange terms in the RHF model changes the in-medium balance of nuclear interactions and the equilibrium of nuclear dynamics, which in turn affects the description of the single-particle effective potential. For several neutron resonance states in $^{120}$ Sn with finite resonant width, RHF model predicts lower resonant energy and smaller widths than RMF. For the single-particle states around the continuum threshold, the featured signals of resonance can depend sensitively on the effective interactions. In addition, for the spin-partner states $\nu {\mathrm{i}}_{13/2}$ and $\nu {\mathrm{i}}_{11/2}$ in resonance states, the effect of Fock terms on their spin-orbit splitting is analyzed. In comparison with the bound states, the wave functions of resonant spin-partner states can differ remarkably from each other, changing the effective potential and single-particle energies correspondingly. Thus, additional components in the single-particle effective potential may also contribute to the spin-orbit splitting of resonance states, aside from the spin-orbit interaction. In order to elucidate the mechanism of Fock term in single-particle resonance physics, in the subsequent study more numerical techniques that have been recently developed will be incorporated into the RHF methodology.
        通信作者:孙保元,sunby@lzu.edu.cn
      • 基金项目:中央高校基本科研业务费专项资金(批准号: lzujbky-2022-sp02, lzujbky-2023-stlt01)和国家自然科学基金(批准号: 11875152)资助的课题.
        Corresponding author:Sun Bao-Yuan,sunby@lzu.edu.cn
      • Funds:Project supported by the Fundamental Research Fund for the Central Universities, China (Grant Nos. lzujbky-2022-sp02, lzujbky-2023-stlt01) and the National Natural Science Foundation of China (Grant No. 11875152).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

    • n $\bar{R}_\mathrm{max}$/fm $E_{\gamma}$/MeV Γ/MeV
      1 12.000 12.457 0.518
      2 17.731 12.377 0.653
      3 22.396 12.368 0.703
      4 26.825 12.365 0.738
      5 31.145 12.360 0.755
      6 35.393 12.358 0.767
      下载: 导出CSV

      $\nu 3 {\mathrm{p}}_{1/2}$ $\nu 1 {\mathrm{h}}_{9/2}$ $\nu {\mathrm{f}}_{5/2}$ $\nu {\mathrm{i}}_{13/2}$ $\nu {\mathrm{i}}_{11/2}$ $\nu {\mathrm{j}}_{15/2}$
      $E_{\gamma}$ Γ $E_{\gamma}$ Γ $E_{\gamma}$ Γ $E_{\gamma}$ Γ $E_{\gamma}$ Γ $E_{\gamma}$ Γ
      PKO1 –0.071 \ 0.262 $\sim$0.000 0.675 0.028 2.802 0.001 9.763 1.152 11.963 0.705
      PKO2 –0.096 \ 0.491 $\sim$0.000 1.150 0.127 2.516 0.001 10.171 1.161 11.882 0.586
      PKO3 0.028 0.013 0.312 $\sim$0.000 0.834 0.049 3.084 0.002 9.963 1.206 12.358 0.767
      DD-LZ1 –0.326 \ 1.437 $6\times 10^{-4}$ 0.268 0.001 4.221 0.016 10.370 1.895 13.277 1.387
      PKDD \ \ 1.054 $1\times 10^{-4}$ 1.173 0.153 3.874 0.009 10.737 1.953 13.313 1.279
      DD-ME2 –0.057 \ 0.949 $6\times 10^{-5}$ 0.787 0.047 4.038 0.012 10.541 1.874 13.329 1.366
      NL3 –0.015 \ \ \ 0.673 0.029 3.263 0.004 9.559 1.205 12.561 0.973
      PK1 0.046 0.034 0.250 $\sim$0.000 0.870 0.063 3.468 0.005 9.808 1.274 12.875 1.036
      PK1(RMF-GF) 0.050 0.033 0.251 $8\times 10^{-8}$ 0.871 0.065 3.469 0.005 9.854 1.283 12.893 1.065
      下载: 导出CSV

      PKO3 PKDD
      $l=4$ $l=6$ $l=4$ $l=6$
      $G''$ –0.856 –1.093 –0.994 –0.434
      $\varSigma_+$ 0.297 23.228 0.319 22.183
      $V_{{\mathrm{CB}}}$ 0.473 –16.907 0.452 –20.589
      $V^{\mathrm{D}}$ 4.362 4.086 7.069 5.703
      $V^{\mathrm{E}}$ 1.800 –2.436 0.000 0.000
      $\Delta \varepsilon$ 6.074 6.878 6.846 6.863
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

    • [1] 浦实, 黄旭光.相对论自旋流体力学. 必威体育下载 , 2023, 72(7): 071202.doi:10.7498/aps.72.20230036
      [2] 刘鹤, 初鹏程.相对论重离子碰撞中π介子椭圆流劈裂. 必威体育下载 , 2023, 72(13): 132101.doi:10.7498/aps.72.20230454
      [3] 高建华, 盛欣力, 王群, 庄鹏飞.费米子的相对论自旋输运理论. 必威体育下载 , 2023, 72(11): 112501.doi:10.7498/aps.72.20222470
      [4] 张斌, 赵健, 赵增秀.基于多组态含时Hartree-Fock方法研究电子关联对于H2分子强场电离的影响. 必威体育下载 , 2018, 67(10): 103301.doi:10.7498/aps.67.20172701
      [5] 余庚华, 刘鸿, 赵朋义, 徐炳明, 高当丽, 朱晓玲, 杨维.采用相对论多组态Dirac-Hartree-Fock方法对Mg原子同位素位移的理论研究. 必威体育下载 , 2017, 66(11): 113101.doi:10.7498/aps.66.113101
      [6] 张磊, 李辉武, 胡梁宾.二维自旋轨道耦合电子气中持续自旋螺旋态的稳定性的研究. 必威体育下载 , 2012, 61(17): 177203.doi:10.7498/aps.61.177203
      [7] 刘野, 陈寿万, 郭建友.复标度方法对原子核单粒子共振态的研究. 必威体育下载 , 2012, 61(11): 112101.doi:10.7498/aps.61.112101
      [8] 余志强, 谢泉, 肖清泉.狭义相对论下电子自旋轨道耦合对X射线光谱的影响. 必威体育下载 , 2010, 59(2): 925-931.doi:10.7498/aps.59.925
      [9] 颉录有, 张志远, 董晨钟, 蒋 军.高离化态类镍离子电子碰撞激发过程的相对论扭曲波理论研究. 必威体育下载 , 2008, 57(10): 6249-6258.doi:10.7498/aps.57.6249
      [10] 张 力, 周善贵, 孟 杰, 赵恩广.单粒子共振态的实稳定方法研究. 必威体育下载 , 2007, 56(7): 3839-3844.doi:10.7498/aps.56.3839
      [11] 陈 刚, 楼智美.四参数双原子分子势阱中相对论粒子的束缚态. 必威体育下载 , 2003, 52(5): 1075-1078.doi:10.7498/aps.52.1075
      [12] 陈 刚, 楼智美.无反射势阱中相对论粒子的束缚态. 必威体育下载 , 2003, 52(5): 1071-1074.doi:10.7498/aps.52.1071
      [13] 傅景礼, 陈立群, 薛 纭.转动相对论Birkhoff系统的平衡稳定性. 必威体育下载 , 2003, 52(2): 256-261.doi:10.7498/aps.52.256
      [14] 郭建友.tan~2(πηr)型势阱中相对论粒子的束缚态. 必威体育下载 , 2002, 51(7): 1453-1457.doi:10.7498/aps.51.1453
      [15] 傅景礼, 陈立群, 薛纭, 罗绍凯.相对论Birkhoff系统的平衡稳定性. 必威体育下载 , 2002, 51(12): 2683-2689.doi:10.7498/aps.51.2683
      [16] 曹李刚, 刘玲, 陈宝秋, 马中玉.稳定和不稳定核巨共振性质的相对论研究. 必威体育下载 , 2001, 50(4): 638-643.doi:10.7498/aps.50.638
      [17] 葛墨林, 段一士.π-π共振态. 必威体育下载 , 1966, 22(6): 724-728.doi:10.7498/aps.22.724
      [18] 葛墨林, 段一士.关于π-π共振态. 必威体育下载 , 1965, 21(11): 1903-1912.doi:10.7498/aps.21.1903
      [19] 许伯威.二粒子共振态的质量公式. 必威体育下载 , 1965, 21(10): 1814-1816.doi:10.7498/aps.21.1814
      [20] 许伯威.介子共振态与么正对称理论. 必威体育下载 , 1965, 21(3): 577-582.doi:10.7498/aps.21.577
    计量
    • 文章访问数:1300
    • PDF下载量:56
    • 被引次数:0
    出版历程
    • 收稿日期:2023-10-10
    • 修回日期:2023-12-18
    • 上网日期:2024-01-03
    • 刊出日期:2024-03-20

      返回文章
      返回
        Baidu
        map