-
基于双级限幅器中两个PIN二极管的多物理场仿真模型与限幅器中其他电路元器件的SPICE模型, 搭建了Si基双级PIN限幅器的场路协同仿真模型, 利用这一模型对微波脉冲作用下限幅器中两级PIN二极管的温度响应特性进行了仿真. 在此基础上对限幅器在不同频率、幅值微波脉冲信号作用下内部发生熔化现象所需的时间与能量进行了仿真, 并对这一过程进行了机理分析与响应特性规律总结. 仿真结果表明, 当限幅器中第一级PIN二极管内部最高温度已达到材料熔点时, 第二级PIN二极管的温度变化幅度较小. 限幅器内部发生熔化现象所消耗的时间与能量随信号幅值、频率的变化呈现出规律性关系, 发生熔化现象所需的时间随信号幅值或频率的提升而减小; 发生熔化现象所需的能量随频率的提升而降低, 随幅值的变化存在极大值点; 限幅器的响应特性对信号参数表现出了不同的敏感性.
This paper aims to analyze the failure mechanism of the two-stage PIN limiter after having been injected by a microwave pulse. A two-stage PIN limiter model with high computational efficiency and accuracy is built by using the method of field-circuit collaborative simulation. Using this model, the temperature change of the PIN diodes during the injection of microwave pulse is simulated. The melting temperature of the PIN diode is selected as the failure criterion of the PIN limiter. The time and energy required for the failure of the PIN limiter under injection of microwave pulses with different frequencies and amplitudes are simulated. Furthermore, the mechanisms that trigger off these effects are analyzed. The relationship between the microwave pulse parameters and the PIN limiter failure time is summarized by using an empirical formula. According to the simulation results, the temperature change of the second-stage PIN diode is relatively small compared with that of the first-stage. During the injection of the microwave pulse, the failure time and energy consumption of limiter show a certain regularity with the variation of microwave pulse amplitude and frequency, and this work discusses this regularity from the following three aspects. Firstly, the failure time and energy consumption decrease in a similar trend with frequency increasing. And with the increase in signal amplitude, the failure time and energy consumption tend to stabilize. Secondly, the increase in the signal amplitude leads failure time to decrease, which is similar to the relationship between failure time and the signal frequency mentioned before. But as the signal’s amplitude increases, the energy consumption first increases and then decreases slightly when the amplitude reaches about 900 V. Based on the theoretical analysis and the physical image of the two-stage PIN limiter, the reasons for these effects can be explained as the changes in the I-region's impedance and heat distribution change caused by electric field changes. Thirdly, the failure time and energy consumption show different sensitivities to different parameters of the microwave pulse. The signal frequency change has greater influence on the energy consumption than the signal amplitude change, while the amplitude change can exert a greater influence on the failure time than the frequency change. -
Keywords:
- two-stage PIN limiter/
- microwave pulse/
- field-circuit collaborative simulation/
- heat effect
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] -
参数 电子(P) 空穴(B) ${\mu _{\max }}$/(${\text{c}}{{\text{m}}^{2}} {\cdot} {{\text{V}}^{{{ - 1}}}} {\cdot} {{\text{s}}^{{{ - 1}}}}$) 1441 470.5 $c$ –0.11 0 $\gamma $ 2.45 2.16 ${\mu _{0 d}}$/(${\text{c}}{{\text{m}}^{2}} {\cdot} {{\text{V}}^{{{ - 1}}}} {\cdot} {{\text{s}}^{{{ - 1}}}}$) 62.2${T_n}^{{{ - }}{\gamma _{{0}d}}}$ 90.0$ {T_n}^{{{ - }}{\gamma _{{0}d}}} $ ${\gamma _{0 d}}$ 0.7 1.3 ${\mu _{1 d}}$/(${\text{c}}{{\text{m}}^{2}} {\cdot} {{\text{V}}^{{{ - 1}}}} {\cdot} {{\text{s}}^{{{ - 1}}}}$) 48.6${T_n}^{{{ - }}{\gamma _{{1}d}}}$ 28.2${T_n}^{{{ - }}{\gamma _{{1}d}}}$ ${\gamma _{1 d}}$ 0.7 2.0 ${\mu _{1 a}}$/(${\text{c}}{{\text{m}}^{2}} {\cdot} {{\text{V}}^{{{ - 1}}}} {\cdot} {{\text{s}}^{{{ - 1}}}}$) 73.5${T_n}^{{{ - }}{\gamma _{{1}a}}}$ 28.2${T_n}^{{{ - }}{\gamma _{{1}a}}}$ ${\gamma _{1 a}}$ 1.25 0.8 ${C_{r1}}$/cm–3 $8.5 \times {10^{16}} {T_n}^{{\gamma _{r1}}}$ $1.3 \times {10^{18}} {T_n}^{{\gamma _{r{1}}}}$ ${\gamma _{r1}}$ 3.65 2.2 ${C_{r2}}$/cm–3 $1.22 \times {10^{17}} {T_n}^{{\gamma _{r2}}}$ $2.45 \times {10^{17}} {T_n}^{{\gamma _{r{2}}}}$ ${\gamma _{r2}}$ 2.65 3.1 ${C_{s1}}$/cm–3 $4.0 \times {10^{20}} {T_n}^{{\gamma _{s{1}}}}$ $1.1 \times {10^{18}} {T_n}^{{\gamma _{s{1}}}}$ ${\gamma _{s1}}$ 0 6.2 ${C_{s2}}$/(1020cm–3) $7.0$ $6.1$ $\alpha $ 0.68 0.77 $\beta $ 0.72 0.719 ${\mu _{0 a}}$/(${\text{c}}{{\text{m}}^{2}} {\cdot} {{\text{V}}^{{{ - 1}}}} {\cdot} {{\text{s}}^{{{ - 1}}}}$) 132.0${T_n}^{{{ - }}{\gamma _{{0}a}}}$ 44.0${T_n}^{{{ - }}{\gamma _{{0}a}}}$ ${\gamma _{0 a}}$ 1.3 0.7 参数 值 $D$/(cm–1·V–1·s–1) $1.04 \times {10^{21}}$ $F$/cm–2 $7.452 \times {10^{13}}$ 参数 电子 空穴 ${v_{{\text{sat, 0}}}}$/(107cm·s–1) $1.07$ $0.837$ $ {v_{{\text{sat}}, \exp }} $ 0.87 0.52 参数 电子 空穴 ${\beta _0}$ 1.109 1.213 ${\beta _{\exp }}$ 0.66 0.17 参数 电子 空穴 ${\tau _{\min }}$/s 0 0 ${\tau _{\max }}$/μs $10$ $3$ ${\tau _0}$/μs $10$ $3$ ${N_{{\text{ref}}}}$/(1016cm–3) $1$ $1$ $\gamma $ 1 1 ${T_{\text{α }}}$ –1.5 –1.5 ${E_{{\text{trap}}}}$/eV 0 0 参数 电子 空穴 ${A_{\text{A}}}$/(10–32cm6·s–1) $6.7$ $7.2$ ${B_{\text{A}}}$/(10–33cm6·s–1) $245$ $4.5$ ${C_{\text{A}}}$/(10–33cm6·s–1) $ - 2.2$ $2.63$ $H$ 3.46667 8.25688 ${N_0}$/(1018cm–3) $1$ $1$ 参数 电子 空穴 ${a_0}$/V 4.65403 2.26018 ${a_1}$/mV $ - 8.76031$ 13.4001 ${a_2}$/μV $13.4037$ $ - 5.87724$ ${a_3}$/nV $ - 2.75108$ $ - 1.14021$ ${b_0}$/V –0.128302 0.058547 ${b_1}$/(10–4V) $44.5552$ $ - 1.95755$ ${b_2}$/(10–7V) $ - 108.66$ $2.44357$ ${b_3}$/(10–10V) $92.3119$ $ - 1.33202$ ${b_4}$/(10–14V) $ - 182.482$ $2.68082$ ${b_5}$/V $ - 4.82689 \times {10^{ - 15}}$ 0 ${b_6}$/V $1.09402 \times {10^{ - 17}}$ 0 ${b_7}$/V $ - 1.24961 \times {10^{ - 20}}$ 0 ${b_8}$/V $7.55584 \times {10^{ - 24}}$ 0 ${b_9}$/V $ - 2.28615 \times {10^{ - 27}}$ 0 ${b_{10}}$/V $2.73344 \times {10^{ - 31}}$ 0 ${c_0}$/(103V·cm–1) $7.76221$ $19.5399$ ${c_1}$/(V·cm–1) 25.18888 –104.441 ${c_2}$/(V·cm–1) $ - 1.37417 \times {10^{ - 3}}$ 0.498768 ${c_3}$/(V·cm–1) $1.59525 \times {10^{ - 4}}$ 0 ${d_0}$/(105V·cm–1) $7.10481$ $20.7712$ ${d_1}$/(103V·cm–1) $3.98594$ 0.993153 ${d_2}$/(V·cm–1) –7.19956 7.77769 ${d_3}$/(V·cm–1) $6.96431 \times {10^{ - 3}}$ 0 -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25]
计量
- 文章访问数:1202
- PDF下载量:36
- 被引次数:0