-
狭缝式成像光谱仪是太阳极紫外光谱成像探测的重要工具之一, 然而目前国内尚无该类载荷, 导致太阳物理学和空间天气学等学科在极紫外光谱诊断研究方面主要依赖国外仪器数据, 严重制约了相关学科的发展. 国外已发射的成像光谱仪仅具有2 ''量级的空间分辨率, 很难观测到日冕加热模型预测的等离子体核心特征. 为了更好地理解太阳不同层次大气之间的耦合过程, 需要更宽光谱覆盖的太阳观测数据. 鉴于此, 本文提出并设计了一款亚角秒空间分辨的太阳极紫外宽波段成像光谱仪, 相比现有仪器, 系统能够实现更高空间和光谱分辨率、更宽光谱范围覆盖的观测. 性能评价结果表明, 系统在62—80 nm, 92—110 nm波段内的像元空间分辨率均优于0.4 '', 光谱分辨率均优于0.007 nm, 光谱成像质量接近衍射极限, 对我国未来首台空间太阳极紫外成像光谱仪的研制具有重要参考价值.The slit imaging spectrometer is one of the important tools for solar extreme ultraviolet (EUV) spectral imaging detection. However, at present, there is no such instrument load in China. The research of solar physics and space weather in the field of EUV spectral diagnosis mainly depends on foreign instrument data, which seriously restricts the development of related disciplines. The spectral imaging instruments that have been launched internationally have only a spatial resolution of
$2''$ , and it is difficult to observe the core characteristics of the plasma related to the coronal heating mechanism predicted by the theoretical model. In order to better understand the coupling process between different layers of the sun’s atmosphere, solar physics research requires the observed data with wider spectral coverage. In light of this, we propose and design a sub-angular second spatially resolved solar extreme ultraviolet broadband imaging spectrometer operating in a band range of 62–80 nm and 92–110 nm. Compared with the existing instruments, the system can achieve high spatial resolution and spectral resolution, and wide spectral range coverage. Performance evaluation results indicate that the imaging spectrometer’s spatial resolutions in both bands are better than 0.4 '', and their spectral resolutions are both better than 0.007 nm, with spectral imaging quality approaching the diffraction limit. The system designed in this work holds significant reference value for developing the first Chinese space-based solar EUV spectroscopic instrument in the future.-
Keywords:
- solar extreme ultraviolet/
- optical design/
- imaging spectrometer/
- toroidal varied line-space grating
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] -
Performance parameters Design values Satellite orbit Dawn-dusk solar
synchronous orbitEntrance aperture/mm2 156 × 156 Slit FOV/('') 4.8 Wavelength range/nm 62—80 & 92—110 & 46—55 (2nd order) Spectral resolution/nm ≤ 0.007 Spatial plate scale/(('')·pixel–1) ≤ 0.5 Spatial resolution/('') ≤ 1.0 System focal length/mm 11000 Optical volume/mm3 ≤ 2800 × 500 × 450 Pixel size of detector/μm 15 (1536 × 1536) Specification Wavelength range@SW/nm 62—80 Wavelength range@LW/nm 92—110 & 46—55
(2nd order)Spectral resolution@SW/nm 0.00615 Spectral resolution@LW/nm 0.00642 Spatial plate scale
@SW/(('')·pixel–1)0.340(@71 nm) Spatial plate scale
@LW/(('')·pixel–1)0.382(@101 nm) System focal length/mm 11000 Optical volume/mm3 2600 × 420 × 400 Detector/μm 15 (1536 × 1536) Telescope design Aperture/mm2 156 × 156 RT/mm 4320.025 Conic –1 $\varDelta $/mm 120 Slit design Slits width/('') 0.28, 1, 2, 40 Slits length/('') 288 Raster coverage/('') ±144 TVLS grating design m +1 order 1/d0/mm–1 1500 β 5.177×@SW;
5.261×@LWi/(°) 0.909 rA/mm 440.667 R/mm 735.545 ρ/mm 737.138 b2 0.0349 Groove density/(lines·mm–1) 1500 ± 4 Ruling area/mm2 36 × 36 Two independent detectors design Wavelength range/nm Tilt angle/(°) 62—80 15.259 92—110 17.824 Component Tolerance items Values of tolerances Primary mirror Surface irregularity (RMS) λ/20
(λ= 632.8 nm)Conic ±0.005 Radius of curvature/mm ±3.6 Microroughness (RMS)/nm 0.4 Element decenter/μm ±50 Element tilt/('') ±15 TVLS grating Substrate irregularity (RMS) λ/30
(λ= 632.8 nm)Line density/
(groove·mm–1)±0.65 Radius of curvature/mm ±0.3 Microroughness (RMS)/nm 0.8 Element decenter/μm ±20 Element tilt/('') ±60 Slit
assemblyElement decenter/μm ±20 Element tilt/(°) ±0.03 -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28]
计量
- 文章访问数:1737
- PDF下载量:47
- 被引次数:0