搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    黄天龙, 吴永政, 倪明, 汪士, 叶永金

    Effects of quantum noise on Shor’s algorithm

    Huang Tian-Long, Wu Yong-Zheng, Ni Ming, Wang Shi, Ye Yong-Jin
    PDF
    HTML
    导出引用
    • Shor算法能够借助量子计算机以多项式级别复杂度解决大整数因式分解问题, 从而破解一系列安全性基于大整数因式分解的加密算法, 例如Rivest-Shamir-Adleman加密算法、Diffie-Hellman密钥交换协议等. 由于量子测量结果是概率性的, 在运行量子线路时很容易受到噪声的干扰, 这将导致无法测量得到预期结果. 本文分别研究了不同通道的噪声对Shor算法的影响, 分别是去极化通道、状态制备与测量通道以及热退相干通道. 本文模拟在噪声环境中运行Shor算法并且给出了数值结果. 数值结果表明Shor算法成功分解整数的概率易受到噪声影响, 其中去极化通道中的噪声能够以指数形式影响Shor算法成功分解整数的概率, 其次是热退相干通道噪声, 最后是状态制备与测量通道噪声, 能够线性影响到Shor算法成功分解的概率. 本文能够为后续纠错、改进Shor算法以及确定工程实现Shor算法所需要的保真度等提供建设性意见.
      Shor’s quantum factoring algorithm (Shor’s algorithm) can solve factorization problem of large integers by using a fully-operational quantum computer with the complexity of polynomial-time level, thereby cracking a series of encryption algorithms (such as Rivest-Shamir-Adleman encryption algorithm, and Diffie-Hellman key exchange protocol) whose security is guaranteed by factorizing large integers, which is a difficult problem. We are currently in a noisy intermediate-scale quantum era, which means that we can only operate on quantum computers with a limited number of qubits and we have to take care of the effects of quantum noise. Quantum states on a quantum computer are prone to quantum noise caused by low-fidelity gates or interactions between qubits and the environment, which results in inaccurate measurements. We study the influence of quantum noise on Shor’s algorithm through 3 typical quantum noise channels: the depolarizing channel, the state preparation and measurement channel, and the thermal relaxation channel. We successfully simulate the factorization of the numbers 15, 21, and 35 into their corresponding prime factors by using the quantum circuit we have constructed on a classical computer. Then we simulate a running quantum circuit of Shor’s algorithm in a noisy environment with different level of noise for a certain type of noise channel and present numerical results. We can obtain precise measurements by calculating the state vector prior to measurement, instead of simulating and measuring expending much time, which contributes to higher efficiency. Each experiment is repeated 1000 times to reduce discrepancy. Our research indicates that Shor’s algorithm is easily affected by quantum noise. Successful rate of Shor’s algorithm decreases exponentially with the increase of noise level in the depolarizing channel, where the successful rate is an indicator we propose in this research to quantify the influence of noise on Shor’s algorithm, meanwhile the noise in the state preparation and measurement channel and the thermal relaxation channel can linearly affect the successful rate of Shor’s algorithm. There are $O(n^4) $ quantum gates in the circuit, each of which is disrupted by noise in depolarizing channel during running the circuit, meanwhile there are only O( n) interruptions caused by noise in state preparation and measurement channel since we repeat the measurements only O( n) times in the circuit where nis the number of bits of the integer about to be factored. Linear relationship in thermal relaxation channel is mainly due to the large gap between quantum gate time and relaxation time even if each gate in the circuit is disrupted by noise in thermal relaxation channel such as depolarizing channel. The present research results can be used for correcting the subsequent errors, improving Shor’s algorithm, and providing guidance for the fidelity required in engineering implementation of Shor’s algorithm.
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

      • 算法 1Shor算法
        输入:待分解的整数N
        输出:N的非平凡素因子p,q
        1:ifNis eventhen
        2:   return$2, {N}/{2}$
        3:end if
        4:if$N=p^k$, where $p$ is prime, $k > 0$then
        5:   return$p$
        6:end if
        7: select a random numbera, where $1 < a < N$
        8:if$\mathrm{gcd}(a, N)>1$then
        9:   return$\mathrm{gcd}(a, N)$, $ {N}/{{\rm{gcd}}(a, N)}$
        10:end if
        11: excute quantum circuit, find minimal positive period of $f_a(x)=a^x\ {\rm{mod}}\ N$, denoted asr
        12:ifris oddor$a^{\frac{r}{2}}\equiv -1\ ({\rm{mod}}\ N)$then
        13:   GOTO 7
        14:end if
        15: calculate $p = \mathrm{gcd}(a^{\frac{r}{2}} - 1, N)$ and $q = \mathrm{gcd}(a^{\frac{r}{2}} + 1, N) $
        16:return$p, q$
        下载: 导出CSV

        N a
        15 [2, 4, 7]
        21 [2, 8, 11]
        35 [2, 4, 9]
        下载: 导出CSV

        $T_1/\text{μ} {\rm{s}}$ $T_2/\text{μ} {\rm{s}}$
        $[20, 30, \cdots, 90, 110]$ 30
        $[30, 40, \cdots, 100, 120]$ 50
        $[40, 50, \cdots, 110, 130]$ 70
        $[50, 60, \cdots, 120, 140]$ 90
        $[60, 70, \cdots, 130, 150]$ 110
        $[70, 80, \cdots, 140, 160]$ 130
        $[80, 90, \cdots, 150, 170]$ 150
        $[90, 100, \cdots, 160, 180]$ 170
        $[100, 110, \cdots, 170, 190]$ 190
        下载: 导出CSV

        N 15 21 35
        a 2 4 7 2 8 11 2 4 9
        单比特门数量 1584 2860 4680
        双比特门数量 8476 17045 30594
        线路深度 6432 12059 20565
        线路宽度(量子比特数) 18 22 26
        平均运行一次所需时间/s 1.15 11.89 142.34
        理论成功率(无噪声) 0.75 0.5 0.75 0.4559 0.5 0.4559 0.4559 0.4559 0.4559
        噪声环境中
        的成功率
        $P_1=0.0025$ 0.2635 0.1593 0.2125 0.0408 0.0482 0.0327 0.0085 0.0058 0.0037
        $P_1=0.005$ 0.0964 0.0526 0.0776 0.0089 0.0078 0.0085 0.0029 0.0013 0.0014
        $P_1=0.0075$ 0.0455 0.0204 0.0358 0.0052 0.0031 0.0051 0.0021 0.0011 0.0011
        $P_1=0.01$ 0.0295 0.0142 0.0278 0.0046 0.0019 0.0044 0.0020 0.0010 0.0010
        $P_2=0.00075$ 0.1017 0.0512 0.0787 0.0073 0.0062 0.0082 0.0025 0.0012 0.0012
        $P_2=0.0015$ 0.0284 0.0124 0.0255 0.0042 0.0015 0.0042 0.0019 0.0009 0.0010
        $P_2=0.00225$ 0.0161 0.0064 0.0158 0.0039 0.0011 0.0039 0.0019 0.0008 0.0009
        $P_2=0.003$ 0.0137 0.0048 0.0138 0.0038 0.0010 0.0038 0.0018 0.0008 0.0009
        $P_{\rm{spam}}=0.05$ 0.5513 0.3441 0.5295 0.2721 0.3596 0.3373 0.3029 0.2739 0.3079
        $P_{\rm{spam}}=0.1$ 0.4058 0.2354 0.4155 0.1823 0.1603 0.1438 0.1335 0.1223 0.1645
        $P_{\rm{spam}}=0.15$ 0.2805 0.1812 0.2955 0.1066 0.1226 0.0758 0.0937 0.0427 0.0680
        $P_{\rm{spam}}=0.2$ 0.2131 0.1193 0.2025 0.0705 0.0816 0.0721 0.0763 0.0125 0.0572
        $T_1=T_2=10~{\text{μs}}$ 0.0792 0.0386 0.0646 0.0067 0.0041 0.0083 0.0029 0.0014 0.0016
        $T_1=T_2=70~{\text{μs}}$ 0.5455 0.3444 0.5497 0.1556 0.2740 0.1963 0.1004 0.0722 0.1019
        $T_1=T_2= 130~\text{μs}$ 0.6314 0.3992 0.6238 0.2714 0.3579 0.2811 0.2202 0.1972 0.2007
        $T_1=T_2= 190\text{μs}$ 0.6603 0.4770 0.6513 0.3690 0.4521 0.3960 0.2998 0.3226 0.3014
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

      • [1] 李天胤, 邢宏喜, 张旦波.基于量子计算的高能核物理研究. 必威体育下载 , 2023, 72(20): 200303.doi:10.7498/aps.72.20230907
        [2] 王晨旭, 贺冉, 李睿睿, 陈炎, 房鼎, 崔金明, 黄运锋, 李传锋, 郭光灿.量子计算与量子模拟中离子阱结构研究进展. 必威体育下载 , 2022, 71(13): 133701.doi:10.7498/aps.71.20220224
        [3] 王宁, 王保传, 郭国平.硅基半导体量子计算研究进展. 必威体育下载 , 2022, 71(23): 230301.doi:10.7498/aps.71.20221900
        [4] 周宗权.量子存储式量子计算机与无噪声光子回波. 必威体育下载 , 2022, 71(7): 070305.doi:10.7498/aps.71.20212245
        [5] 范洪义, 吴泽.介观电路中量子纠缠的经典对应. 必威体育下载 , 2022, 71(1): 010302.doi:10.7498/aps.71.20210992
        [6] 周文豪, 王耀, 翁文康, 金贤敏.集成光量子计算的研究进展. 必威体育下载 , 2022, 71(24): 240302.doi:10.7498/aps.71.20221782
        [7] 张结印, 高飞, 张建军.硅和锗量子计算材料研究进展. 必威体育下载 , 2021, 70(21): 217802.doi:10.7498/aps.70.20211492
        [8] 张诗豪, 张向东, 李绿周.基于测量的量子计算研究进展. 必威体育下载 , 2021, 70(21): 210301.doi:10.7498/aps.70.20210923
        [9] 范洪义, 吴泽.介观电路中量子纠缠的经典对应. 必威体育下载 , 2021, (): .doi:10.7498/aps.70.20210992
        [10] 丁晨, 李坦, 张硕, 郭楚, 黄合良, 鲍皖苏.基于辅助单比特测量的量子态读取算法. 必威体育下载 , 2021, 70(21): 210303.doi:10.7498/aps.70.20211066
        [11] 陈然一鎏, 赵犇池, 宋旨欣, 赵炫强, 王琨, 王鑫.混合量子-经典算法: 基础、设计与应用. 必威体育下载 , 2021, 70(21): 210302.doi:10.7498/aps.70.20210985
        [12] 王芙蓉, 杨帆, 张亚, 李世中, 王鹤峰.基于奇异值分解的矩阵低秩近似量子算法. 必威体育下载 , 2021, 70(15): 150201.doi:10.7498/aps.70.20210411
        [13] 林键, 叶梦, 朱家纬, 李晓鹏.机器学习辅助绝热量子算法设计. 必威体育下载 , 2021, 70(14): 140306.doi:10.7498/aps.70.20210831
        [14] 杨乐, 李凯, 戴宏毅, 张明.基于量子算法的量子态层析新方案. 必威体育下载 , 2019, 68(14): 140301.doi:10.7498/aps.68.20190157
        [15] 田宇玲, 冯田峰, 周晓祺.基于冗余图态的多人协作量子计算. 必威体育下载 , 2019, 68(11): 110302.doi:10.7498/aps.68.20190142
        [16] 范桁.量子计算与量子模拟. 必威体育下载 , 2018, 67(12): 120301.doi:10.7498/aps.67.20180710
        [17] 杨光, 廉保旺, 聂敏.多跳噪声量子纠缠信道特性及最佳中继协议. 必威体育下载 , 2015, 64(24): 240304.doi:10.7498/aps.64.240304
        [18] 李盼池, 王海英, 戴庆, 肖红.量子过程神经网络模型算法及应用. 必威体育下载 , 2012, 61(16): 160303.doi:10.7498/aps.61.160303
        [19] 李盼池, 王海英, 宋考平, 杨二龙.量子势阱粒子群优化算法的改进研究. 必威体育下载 , 2012, 61(6): 060302.doi:10.7498/aps.61.060302
        [20] 鲁翠萍, 袁春华, 张卫平.受激拉曼增益介质中的量子噪声特性研究. 必威体育下载 , 2008, 57(11): 6976-6981.doi:10.7498/aps.57.6976
      计量
      • 文章访问数:1493
      • PDF下载量:74
      • 被引次数:0
      出版历程
      • 收稿日期:2023-09-03
      • 修回日期:2023-12-10
      • 上网日期:2024-01-04
      • 刊出日期:2024-03-05

        返回文章
        返回
          Baidu
          map