Compared with two-electrode gas spark switch, three-electrode gas spark switch has the advantages of lower operating voltage, higher reliability and less discharge jitter, so it has been widely used in pulse power systems. However, due to the characteristics of pulse power technology, the gas spark switch is easy to cause ablation on the electrode surface during use, and the metal particles generated by ablation will significantly affect the stability and reliability of the switch. In this work the discharge process of the three-electrode gas spark switch under atmospheric pressure nitrogen environment is simulated first. In this model, the ionization coefficient near the trigger electrode is modified to compensate for the shortcomings of the local field approximation, and the relevant mathematical derivation process is given. The formation of the initial electrons is described by the field electron emission phenomenon, and the development process of electron collapse into the streamer is obtained. The physical mechanism of switch on is investigated, and the development process of each stage of switch discharge is described in detail. Then, the discharge process of the switch is studied when there are metal particles near the trigger. The study shows that the presence of metal particles enhances the electric field near the trigger and accelerates the formation of the initial electron cloud. In addition, in the presence of metal particles, the metal particles and the trigger will first break down, forming a high-density plasma channel after the breakdown, and becoming the source of the subsequent flow development. At the same time, because the metal particles on the channel have an obstructing effect on the streamer development, the streamer generates a discharge branch after contacting metal particles. In the end, the influences of metal particles of different shapes and sizes on the discharge process are discussed. The results show that metal particles with sharp shapes have stronger electric field distortion, when the electric field intensity is large enough, it may cause field emission on the surface of metal particle. And it is also made clear that the size of metal particle is small, the obstruction of the development path of streamer is small, and the streamers quickly converge behind the particles.