搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    权东晓, 吕晓杰, 张雯菲

    Structure design and logical CNOT implementation of multi-logical-qubits surface code

    Quan Dong-Xiao, Lü Xiao-Jie, Zhang Wen-Fei
    PDF
    HTML
    导出引用
    • 量子计算因具有并行处理能力, 相比于经典计算有着指数级的加速, 但量子系统具有脆弱性, 极易受到噪声的影响, 量子纠错码是克服量子噪声的有效手段. 量子表面码是一种拓扑稳定子码, 由于其结构上的最近邻居特点和较高的容错阈值, 表面码在大规模容错量子计算方面具有巨大的潜力. 目前已有的基于边界的表面码均为编码一个逻辑比特的表面码, 本文主要研究基于边界如何实现多逻辑量子比特的编码, 包括设计表面码的结构, 根据结构找出对应的稳定子和逻辑操作, 进一步根据稳定子设计出基于稳定子实现的编码线路; 在研究基于测量和纠正的单量子比特间CNOT实现原理和基于融合操作和分割操作的单逻辑量子比特表面码间CNOT门实现原理的基础上, 优化了基于融合操作和分割操作的单逻辑量子比特表面码间CNOT门实现方案, 将其扩展到所设计的多逻辑量子比特表面码上实现了多逻辑量子比特表面码之间的CNOT操作, 并通过仿真验证量子线路的正确性. 本文设计的多逻辑比特表面码克服了单比特表面码不能密铺于量子芯片的缺点且提高了某些逻辑操作的长度, 提高了容错能力. 基于联合测量的思想降低了对辅助比特的要求且减小了实现过程中对量子资源的需求.
      As its parallel processing ability, quantum computing has an exponential acceleration over classical computing. However, quantum systems are fragile and susceptible to noise. Quantum error correction code is an effective means to overcome quantum noise. Quantum surface codes are topologically stable subcodes that have great potential for large-scale fault-tolerant quantum computing because of their structural nearest neighbor characteristics and high fault-tolerance thresholds. The existing boundary-based surface codes can encode one logical qubit. This paper mainly studies how to implement multi-logical-qubits encoding based on the boundary, including designing the structure of the surface code, finding out the corresponding stabilizers and logical operations according to the structure, and further designing the coding circuit based on the stabilizers. After research on the single qubit CNOT implementation principle based on measurement and correcting and the logic CNOT implementation based on fusion and segmentation, we further optimized implementation scheme of the logic CNOT implementation based on fusion and segmentation. The scheme is extended to the designed multi-logical-qubits surface code to realize the CNOT operation between the multi-logical-qubits surface codes, and the correctness of the quantum circuit is verified by simulation. The multi-logical-qubits surface code designed in this paper overcomes the disadvantage that the single-logical-qubit surface code can not be densely embedded in the quantum chip, improves the length of some logical operations, and increases the fault tolerance ability. The idea of joint measurement reduces the requirement for ancilla qubits and reduces the demand for quantum resources in the implementation process.
          通信作者:权东晓,dxquan@xidian.edu.cn
        • 基金项目:国家自然科学基金(批准号: 62001351)和陕西省重点研发计划(批准号: 2019ZDLGY09-02)资助的课题.
          Corresponding author:Quan Dong-Xiao,dxquan@xidian.edu.cn
        • Funds:Project supported by the National Natural Science Foundation of China (Grant No. 62001351) and the Key Research and Development Program of Shaanxi Province, China (Grant No. 2019ZDLGY09-02).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

      • $X_{{\mathrm{L}}}$ $Z_{{\mathrm{L}}}$
        $X_{{\mathrm{L}}1}=X_{1}X_{3}$ $Z_{{\mathrm{L}}1}=Z_{1}Z_{2} $
        $X_{{\mathrm{L}}2}=X_{10}X_{12}$ $Z_{{\mathrm{L}}2}=Z_{5}Z_{10}$
        $X_{{\mathrm{L}}3}=X_{8}X_{11}$ $Z_{{\mathrm{L}}3}=Z_{8}Z_{6} Z_{4} Z_{2}$
        下载: 导出CSV

        测量结果 输出态
        $M_{1}$=0, $M_{2}$=0, $M_{3}$=0 $\alpha \left |00 \right \rangle (m\left | 0 \right \rangle+n\left | 1 \right \rangle )+\beta \left | 10 \right \rangle(m\left | 1 \right \rangle+n\left | 0 \right \rangle)$
        $M_{1}$=0, $M_{2}$=0, $M_{3}$=1 $\alpha \left |01 \right \rangle (m\left |1 \right \rangle+n\left |0 \right \rangle )+\beta \left | 11 \right \rangle(m\left | 0 \right \rangle+n\left | 1 \right \rangle)$
        $M_{1}$=0, $M_{2}$=1, $M_{3}$=0 $\alpha \left |00 \right \rangle (m\left | 0 \right \rangle+n\left | 1 \right \rangle )-\beta \left | 10 \right \rangle(m\left | 1 \right \rangle+n\left | 0 \right \rangle)$
        $M_{1}$=0, $M_{2}$=1, $M_{3}$=1 $-\alpha \left |01 \right \rangle (m\left |1 \right \rangle+n\left |0 \right \rangle )+\beta \left | 11 \right \rangle(m\left | 0 \right \rangle+n\left | 1 \right \rangle)$
        $M_{1}$=1, $M_{2}$=0, $M_{3}$=0 $\alpha \left |00 \right \rangle (m\left | 1 \right \rangle+n\left | 0 \right \rangle )+\beta \left | 10 \right \rangle(m\left | 0 \right \rangle+n\left | 1 \right \rangle)$
        $M_{1}$=1, $M_{2}$=0, $M_{3}$=1 $\alpha \left |01 \right \rangle (m\left |0 \right \rangle+n\left |1 \right \rangle )+\beta \left | 11 \right \rangle(m\left | 1 \right \rangle+n\left | 0 \right \rangle)$
        $M_{1}$=1, $M_{2}$=1, $M_{3}$=0 $-\alpha \left |00 \right \rangle (m\left |1 \right \rangle+n\left | 0 \right \rangle )+\beta \left | 10 \right \rangle(m\left | 0 \right \rangle+n\left |1 \right \rangle)$
        $M_{1}$=1, $M_{2}$=1, $M_{3}$=1 $\alpha \left |01 \right \rangle (m\left |0 \right \rangle+n\left |1 \right \rangle )-\beta \left | 11 \right \rangle(m\left | 1 \right \rangle+n\left | 0 \right \rangle)$
        下载: 导出CSV

        测量结果($M_{1}$$M_{2}$$M_{3}$) 000 001 010 011
        $ \left|\mathrm{CQ}\right\rangle\otimes\left|\mathrm{INT}\right\rangle\otimes\left|\mathrm{TQ}\right\rangle $ $\left|AB0\right\rangle \left|0\right\rangle \left|CD0\right\rangle $ $\left|AB0\right\rangle \left|1\right\rangle \left|CD0\right\rangle $ $\left|AB0\right\rangle \left|0\right\rangle \left|CD0\right\rangle $ $\left|AB0\right\rangle \left|1\right\rangle \left|CD0\right\rangle $
        测量结果($M_{1}$$M_{2}$$M_{3}$) 100 101 110 111
        $ \left|\mathrm{CQ}\right\rangle\otimes\mathrm{\left|INT\right\rangle}\otimes\mathrm{\left|TQ\right\rangle} $ $\left|AB0\right\rangle \left|0\right\rangle \left|CD0\right\rangle $ $\left|AB0\right\rangle \left|1\right\rangle \left|CD0\right\rangle $ $\left|AB0\right\rangle \left|0\right\rangle \left|CD0\right\rangle $ $\left|AB0\right\rangle \left|1\right\rangle \left|CD0\right\rangle $
        下载: 导出CSV

        测量结果($M_{1}$$M_{2}$$M_{3}$) 000 001 010 011
        $ \mathrm{\left|CQ\right\rangle\otimes\left|INT\right\rangle\otimes\left|TQ\right\rangle} $ $\left|AB0\right\rangle \left|0\right\rangle \left|CD1\right\rangle $ $\left|AB0\right\rangle \left|1\right\rangle \left|CD1\right\rangle $ $\left|AB0\right\rangle \left|0\right\rangle \left|CD1\right\rangle $ $\left|AB0\right\rangle \left|1\right\rangle \left|CD1\right\rangle $
        测量结果($M_{1}$$M_{2}$$M_{3}$) 100 101 110 111
        $ \mathrm{\left|CQ\right\rangle\otimes\left|INT\right\rangle\otimes\left|TQ\right\rangle} $ $\left|AB0\right\rangle \left|0\right\rangle \left|CD1\right\rangle $ $\left|AB0\right\rangle \left|1\right\rangle \left|CD1\right\rangle $ $\left|AB0\right\rangle \left|0\right\rangle \left|CD1\right\rangle $ $\left|AB0\right\rangle \left|1\right\rangle \left|CD1\right\rangle $
        下载: 导出CSV

        测量结果($M_{1}$$M_{2}$$M_{3}$) 000 001 010 011
        $ \mathrm{\left|CQ\right\rangle\otimes\left|INT\right\rangle\otimes\left|TQ\right\rangle} $ $\left|AB1\right\rangle \left|0\right\rangle \left|CD0\right\rangle $ $\left|AB1\right\rangle \left|1\right\rangle \left|CD0\right\rangle $ $\left|AB1\right\rangle \left|0\right\rangle \left|CD0\right\rangle $ $\left|AB1\right\rangle \left|1\right\rangle \left|CD0\right\rangle $
        测量结果($M_{1}$$M_{2}$$M_{3}$) 100 101 110 111
        $ \mathrm{\left|CQ\right\rangle\otimes\left|INT\right\rangle\otimes\left|TQ\right\rangle} $ $\left|AB1\right\rangle \left|0\right\rangle \left|CD0\right\rangle $ $\left|AB1\right\rangle \left|1\right\rangle \left|CD0\right\rangle $ $\left|AB1\right\rangle \left|0\right\rangle \left|CD0\right\rangle $ $\left|AB1\right\rangle \left|1\right\rangle \left|CD0\right\rangle $
        下载: 导出CSV

        测量结果($M_{1}$$M_{2}$$M_{3}$) 000 001 010 011
        $ \mathrm{\left|CQ\right\rangle\otimes\left|INT\right\rangle\otimes\left|TQ\right\rangle} $ $\left|AB1\right\rangle \left|0\right\rangle \left|CD1\right\rangle $ $\left|AB1\right\rangle \left|1\right\rangle \left|CD1\right\rangle $ $\left|AB1\right\rangle \left|0\right\rangle \left|CD1\right\rangle $ $\left|AB1\right\rangle \left|1\right\rangle \left|CD1\right\rangle $
        测量结果($M_{1}$$M_{2}$$M_{3}$) 100 101 110 111
        $ \mathrm{\left|CQ\right\rangle\otimes\left|INT\right\rangle\otimes\left|TQ\right\rangle} $ $\left|AB1\right\rangle \left|0\right\rangle \left|CD1\right\rangle $ $\left|AB1\right\rangle \left|1\right\rangle \left|CD1\right\rangle $ $\left|AB1\right\rangle \left|0\right\rangle \left|CD1\right\rangle $ $\left|AB1\right\rangle \left|1\right\rangle \left|CD1\right\rangle $
        下载: 导出CSV

        基于联合测量和
        逻辑测量的方法
        基于晶格融合
        与分割的方法
        辅助表面码的码距 3 4
        辅助表面码的数据量子
        比特数目
        13 25
        量子门数目
        (不含纠正操作)
        19 40
        测量次数 3 15
        最大纠正次数 2 15
        下载: 导出CSV

        000 001 010 011 100 101 110 111
        $|000000000000\rangle$ $|010000110011\rangle$ $|000000000101\rangle$ $|010000110110\rangle$ $|000000010010\rangle$ $|010000100001\rangle$ $|000000010111\rangle$ $|010000100100\rangle$
        $|000000001011\rangle$ $|010000111000\rangle$ $|000000001110\rangle$ $|010000111101\rangle$ $|000000011001\rangle$ $|010000101010\rangle$ $|000000011100\rangle$ $|010000101111\rangle$
        $|000010100100\rangle$ $|010010010111\rangle$ $|000010100001\rangle$ $|010010010010\rangle$ $|000010110110\rangle$ $|010010000101\rangle$ $|000010110011\rangle$ $|010010000000\rangle$
        $|000010101111\rangle$ $|010010011100\rangle$ $|000010101010\rangle$ $|010010011001\rangle$ $|000010111101\rangle$ $|010010001110\rangle$ $|000010111000\rangle$ $|010010001011\rangle$
        $|000101100011\rangle$ $|010101010000\rangle$ $|000101100110\rangle$ $|010101010101\rangle$ $|000101110001\rangle$ $|010101000010\rangle$ $|000101110100\rangle$ $|010101000111\rangle$
        $|000101101000\rangle$ $|010101011011\rangle$ $|000101101101\rangle$ $|010101011110\rangle$ $|000101111010\rangle$ $|010101001001\rangle$ $|000101111111\rangle$ $|010101001100\rangle$
        $|000111000111\rangle$ $|010111110100\rangle$ $|000111000010\rangle$ $|010111110001\rangle$ $|000111010101\rangle$ $|010111100110\rangle$ $|000111010000\rangle$ $|010111100011\rangle$
        $|000111001100\rangle$ $|010111111111\rangle$ $|000111001001\rangle$ $|010111111010\rangle$ $|000111011110\rangle$ $|010111101101\rangle$ $|000111011011\rangle$ $|010111101000\rangle$
        $|001001010000\rangle$ $|011001100011\rangle$ $|001001010101\rangle$ $|011001100110\rangle$ $|001001000010\rangle$ $|011001110001\rangle$ $|001001000111\rangle$ $|011001110100\rangle$
        $|001001011011\rangle$ $|011001101000\rangle$ $|001001011110\rangle$ $|011001101101\rangle$ $|001001001001\rangle$ $|011001111010\rangle$ $|001001001100\rangle$ $|011001111111\rangle$
        $|001011110100\rangle$ $|011011000111\rangle$ $|001011110001\rangle$ $|011011000010\rangle$ $|001011100110\rangle$ $|011011010101\rangle$ $|001011100011\rangle$ $|011011010000\rangle$
        $|001011111111\rangle$ $|011011001100\rangle$ $|001011111010\rangle$ $|011011001001\rangle$ $|001011101101\rangle$ $|011011011110\rangle$ $|001011101000\rangle$ $|011011011011\rangle$
        $|001100110011\rangle$ $|011100000000\rangle$ $|001100110110\rangle$ $|011100000101\rangle$ $|001100100001\rangle$ $|011100010010\rangle$ $|001100100100\rangle$ $|011100010111\rangle$
        $|001100111000\rangle$ $|011100001011\rangle$ $|001100111101\rangle$ $|011100001110\rangle$ $|001100101010\rangle$ $|011100011001\rangle$ $|001100101111\rangle$ $|011100011100\rangle$
        $|001110010111\rangle$ $|011110100100\rangle$ $|001110010010\rangle$ $|011110100001\rangle$ $|001110000101\rangle$ $|011110110110\rangle$ $|001110000000\rangle$ $|011110110011\rangle$
        $|001110011100\rangle$ $|011110101111\rangle$ $|001110011001\rangle$ $|011110101010\rangle$ $|001110001110\rangle$ $|011110111101\rangle$ $|001110001011\rangle$ $|011110111000\rangle$
        $|110001100011\rangle$ $|100001010000\rangle$ $|110001100110\rangle$ $|100001010101\rangle$ $|110001110001\rangle$ $|100001000010\rangle$ $|110001110100\rangle$ $|100001000111\rangle$
        $|110001101000\rangle$ $|100001011011\rangle$ $|110001101101\rangle$ $|100001011110\rangle$ $|110001111010\rangle$ $|100001001001\rangle$ $|110001111111\rangle$ $|100001001100\rangle$
        $|110011000111\rangle$ $|100011110100\rangle$ $|110011000010\rangle$ $|100011110001\rangle$ $|110011010101\rangle$ $|100011100110\rangle$ $|110011010000\rangle$ $|100011100011\rangle$
        $|110011001100\rangle$ $|100011111111\rangle$ $|110011001001\rangle$ $|100011111010\rangle$ $|110011011110\rangle$ $|100011101101\rangle$ $|110011011011\rangle$ $|100011101000\rangle$
        $|110100000000\rangle$ $|100100110011\rangle$ $|110100000101\rangle$ $|100100110110\rangle$ $|110100010010\rangle$ $|100100100001\rangle$ $|110100010111\rangle$ $|100100100100\rangle$
        $|110100001011\rangle$ $|100100111000\rangle$ $|110100001110\rangle$ $|100100111101\rangle$ $|110100011001\rangle$ $|100100101010\rangle$ $|110100011100\rangle$ $|100100101111\rangle$
        $|110110100100\rangle$ $|100110010111\rangle$ $|110110100001\rangle$ $|100110010010\rangle$ $|110110110110\rangle$ $|100110000101\rangle$ $|110110110011\rangle$ $|100110000000\rangle$
        $|110110101111\rangle$ $|100110011100\rangle$ $|110110101010\rangle$ $|100110011001\rangle$ $|110110111101\rangle$ $|100110001110\rangle$ $|110110111000\rangle$ $|100110001011\rangle$
        $|111000110011\rangle$ $|101000000000\rangle$ $|111000110110\rangle$ $|101000000101\rangle$ $|111000100001\rangle$ $|101000010010\rangle$ $|111000100100\rangle$ $|101000010111\rangle$
        $|111000111000\rangle$ $|101000001011\rangle$ $|111000111101\rangle$ $|101000001110\rangle$ $|111000101010\rangle$ $|101000011001\rangle$ $|111000101111\rangle$ $|101000011100\rangle$
        $|111010010111\rangle$ $|101010100100\rangle$ $|111010010010\rangle$ $|101010100001\rangle$ $|111010000101\rangle$ $|101010110110\rangle$ $|111010000000\rangle$ $|101010110011\rangle$
        $|111010011100\rangle$ $|101010101111\rangle$ $|111010011001\rangle$ $|101010101010\rangle$ $|111010001110\rangle$ $|101010111101\rangle$ $|111010001011\rangle$ $|101010111000\rangle$
        $|111101010000\rangle$ $|101101100011\rangle$ $|111101010101\rangle$ $|101101100110\rangle$ $|111101000010\rangle$ $|101101110001\rangle$ $|111101000111\rangle$ $|101101110100\rangle$
        $|111101011011\rangle$ $|101101101000\rangle$ $|111101011110\rangle$ $|101101101101\rangle$ $|111101001001\rangle$ $|101101111010\rangle$ $|111101001100\rangle$ $|101101111111\rangle$
        $|111111110100\rangle$ $|101111000111\rangle$ $|111111110001\rangle$ $|101111000010\rangle$ $|111111100110\rangle$ $|101111010101\rangle$ $|111111100011\rangle$ $|101111010000\rangle$
        $|111111111111\rangle$ $|101111001100\rangle$ $|111111111010\rangle$ $|101111001001\rangle$ $|111111101101\rangle$ $|101111011110\rangle$ $|111111101000\rangle$ $|101111011011\rangle$
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

      • [1] 豆树清, 杨晓阔, 夏永顺, 袁佳卉, 崔焕卿, 危波, 白馨, 冯朝文.一种基于异质多铁结构全局应变时钟的纳磁体择多逻辑门. 必威体育下载 , 2023, 72(15): 157501.doi:10.7498/aps.72.20230866
        [2] 刘腾, 陆鹏飞, 胡碧莹, 吴昊, 劳祺峰, 边纪, 刘泱, 朱峰, 罗乐.离子阱中以声子为媒介的多体量子纠缠与逻辑门. 必威体育下载 , 2022, 71(8): 080301.doi:10.7498/aps.71.20220360
        [3] 金钊, 李芮, 公卫江, 祁阳, 张寿, 苏石磊.基于共振里德伯偶极-偶极相互作用的双反阻塞机制及量子逻辑门的实现. 必威体育下载 , 2021, 70(13): 134202.doi:10.7498/aps.70.20210059
        [4] 刘嘉豪, 杨晓阔, 危波, 李成, 张明亮, 李闯, 董丹娜.基于倾斜纳磁体翻转倾向性的与(或)逻辑门应力模型. 必威体育下载 , 2019, 68(1): 017501.doi:10.7498/aps.68.20181621
        [5] 张茜, 李萌, 龚旗煌, 李焱.飞秒激光直写光量子逻辑门. 必威体育下载 , 2019, 68(10): 104205.doi:10.7498/aps.68.20190024
        [6] 王殿伟, 韩鹏飞, 范九伦, 刘颖, 许志杰, 王晶.基于光照-反射成像模型和形态学操作的多谱段图像增强算法. 必威体育下载 , 2018, 67(21): 210701.doi:10.7498/aps.67.20181288
        [7] 危波, 蔡理, 杨晓阔, 李成.基于多铁纳磁体的择多逻辑门三维磁化动态特性研究. 必威体育下载 , 2017, 66(21): 217501.doi:10.7498/aps.66.217501
        [8] 颜森林.激光混沌并联同步及其在全光逻辑门中的应用研究. 必威体育下载 , 2013, 62(23): 230504.doi:10.7498/aps.62.230504
        [9] 靳晓琴, 许勇, 张慧清.非高斯噪声驱动下一维双稳系统的逻辑操作. 必威体育下载 , 2013, 62(19): 190510.doi:10.7498/aps.62.190510
        [10] 王文睿, 于晋龙, 韩丙辰, 郭精忠, 罗俊, 王菊, 刘毅, 杨恩泽.基于高非线性光纤中非线性偏振旋转效应的全光逻辑门研究. 必威体育下载 , 2012, 61(8): 084214.doi:10.7498/aps.61.084214
        [11] 颜森林.激光混沌耦合反馈光电及全光逻辑门研究. 必威体育下载 , 2011, 60(5): 050509.doi:10.7498/aps.60.050509
        [12] 卢道明.腔外原子操作控制腔内原子的纠缠特性. 必威体育下载 , 2010, 59(12): 8359-8364.doi:10.7498/aps.59.8359
        [13] 张国锋, 邢钊.基于非均匀外场的双量子比特自旋XYZ模型的swap门操作. 必威体育下载 , 2010, 59(3): 1468-1472.doi:10.7498/aps.59.1468
        [14] 陈立冰, 谭鹏, 董少光, 路洪.利用二粒子部分纠缠态实现开靶目标的非局域量子可控非(CNOT)门的受控操作. 必威体育下载 , 2009, 58(10): 6772-6778.doi:10.7498/aps.58.6772
        [15] 董建绩, 张新亮, 王 阳, 黄德修.基于单个半导体光放大器的高速多功能逻辑门. 必威体育下载 , 2008, 57(4): 2222-2228.doi:10.7498/aps.57.2222
        [16] 李燕明, 陈理想, 佘卫龙.光致异构全光逻辑门理论与实验研究. 必威体育下载 , 2007, 56(10): 5895-5902.doi:10.7498/aps.56.5895
        [17] 郭 旗, 张霞萍, 胡 巍, 寿 倩.基于强非局域空间光孤子特性的光子开关和光子逻辑门. 必威体育下载 , 2006, 55(4): 1832-1839.doi:10.7498/aps.55.1832
        [18] 陈明伦, 王顺金.用激光-二能级原子系统实现一位通用量子逻辑门. 必威体育下载 , 2006, 55(9): 4638-4641.doi:10.7498/aps.55.4638
        [19] 严晓波, 王顺金.由各向异性海森伯自旋环链组成的量子位及其通用量子逻辑门. 必威体育下载 , 2006, 55(4): 1591-1595.doi:10.7498/aps.55.1591
        [20] 冯晓强, 侯 洵, 杨文正, 杨 青, 陈 烽.基于细菌视紫红质光子逻辑门的实验研究. 必威体育下载 , 2003, 52(11): 2803-2806.doi:10.7498/aps.52.2803
      计量
      • 文章访问数:1817
      • PDF下载量:70
      • 被引次数:0
      出版历程
      • 收稿日期:2023-07-14
      • 修回日期:2023-11-21
      • 上网日期:2023-12-22
      • 刊出日期:2024-02-20

        返回文章
        返回
          Baidu
          map