搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

仇鹏, 刘恒, 朱晓丽, 田丰, 杜梦超, 邱洪宇, 陈冠良, 胡玉玉, 孔德林, 杨晋, 卫会云, 彭铭曾, 郑新和

Atomic layer deposition and application of group III nitrides semiconductor and their alloys

Qiu Peng, Liu Heng, Zhu Xiao-Li, Tian Feng, Du Meng-Chao, Qiu Hong-Yu, Chen Guan-Liang, Hu Yu-Yu, Kong De-Lin, Yang Jin, Wei Hui-Yun, Peng Ming-Zeng, Zheng Xin-He
PDF
HTML
导出引用
  • III族氮化物半导体由于包含了宽的直接禁带宽度、高击穿场强、高电子饱和速度、高电子迁移率等优异的性质, 自从发展以来便成为半导体领域中的一个热点. 并且由于其禁带宽度可以从近紫外涵盖到红外区域, 因此在传统半导体所难以实现的短波长光电子器件领域, 也具有广阔的应用前景. 原子层沉积由于其特殊的沉积机制可以在较低的温度下实现III族氮化物半导体的高质量制备, 通过调整原子层沉积的循环比也可以方便地调整合金材料中的成分. 发展至今, 原子层沉积已经成为制备III族氮化物及其合金材料的一种重要方式. 因此, 本文着重介绍了近期使用原子层沉积进行III族氮化物半导体及其合金的沉积及应用, 包括使用不同前驱体、不同方式、不同类型原子层沉积, 在不同温度、不同衬底上进行氮化物半导体及其合金的沉积. 随后讨论了原子层沉积制备的III族氮化物材料在不同器件中的应用. 最后总结了原子层沉积在制备III族氮化物半导体中的前景和挑战.
    Group III nitride semiconductors, such as GaN, AlN, and InN, are an important class of compound semiconductor material, and have attracted much attention, because of their unique physicochemical properties. These semiconductors possess excellent characteristics, such as wide direct bandgap, high breakdown field strength, high electron mobility, and good stability, and thus are called third-generation semiconductors. Their alloy materials can adjust their bandgaps by changing the type or proportion of group III elements, covering a wide wavelength range from near-ultraviolet to infrared, thereby achieving wavelength selectivity in optoelectronic devices. Atomic layer deposition (ALD) is a unique technique that produces high-quality group III nitride films at low temperatures. The ALD has become an important method of preparing group III nitrides and their alloys. The alloy composition can be easily controlled by adjusting the ALD cycle ratio. This review highlights recent work on the growth and application of group III nitride semiconductors and their alloys by using ALD. The work is summarized according to similarities so as to make it easier to understand the progress and focus of related research. Firstly, this review summarizes binary nitrides with a focus on their mechanism and application. In the section on mechanism investigation, the review categorizes and summarizes the effects of ALD precursor material, substrate, temperature, ALD type, and other conditions on film quality. This demonstrates the effects of different conditions on film growth behavior and quality. The section on application exploration primarily introduces the use of group III nitride films in various devices through ALD, analyzes the enhancing effects of group III nitrides on these devices, and explores the underlying mechanisms. Additionally, this section discusses the growth of group III nitride alloys through ALD, summarizing different deposition methods and conditions. Regarding the ALD growth of group III nitride semiconductors, there is more research on the ALD growth of AlN and GaN, and less research on InN and its alloys. Additionally, there is less research on the ALD growth of GaN for applications, as it is still in the exploratory stage, while there is more research on the ALD growth of AlN for applications. Finally, this review points out the prospects and challenges of ALD in preparation of group III nitride semiconductors and their alloys.
        通信作者:郑新和,xinhezheng@ustb.edu.cn
      • 基金项目:国家重点研发计划(批准号: 2018YFA0703700)、国家自然科学基金(批准号: 52002021)和中央高校基本科研业务费(批准号: FRF-IDRY-GD22-001)资助的课题.
        Corresponding author:Zheng Xin-He,xinhezheng@ustb.edu.cn
      • Funds:Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0703700), the National Natural Science Foundation of China (Grant No. 52002021), and the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-IDRY-GD22-001).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

    • 材料 金属前驱体 氮前驱体 沉积温度/ ℃ 沉积衬底 应用 ALD类型 等离子体功率/W 参考文献
      GaN TEG Ar/N2/H2(1∶3∶6) 350 Si (100) 薄膜生长 PE-ALD 60 [32]
      GaN TEG Ar/N2/H2(1∶3∶6) 350 Si (100) 薄膜生长 PE-ALD 60 [33]
      GaN TEG Ar/N2/H2(1∶3∶6) 350 c-sapphire 薄膜生长 PE-ALD 60 [34]
      GaN TEG N2/H2 200 Si (100) 薄膜生长 HCPA-ALD 300 [36]
      GaN TMG N2/H2 120—240 Si (100) 薄膜生长 HCP-ALD 50—250 [37]
      GaN TEG N2/H2 200 sapphire 薄膜生长 HCPA-ALD 300 [38]
      GaN TEG NH3/Ar 160—350 Si (100) 薄膜生长 PE-ALD 2000 [39]
      GaN TEG N2/H2 300 sapphire (0001) 薄膜生长 PE-ALD 50和 300 [40]
      GaN Ga(NMe2)3 NH3/Ar 130—250 Si (100)
      4H-SiC (0002)
      薄膜生长 PE-ALD 2800 [41]
      GaN Ga(NMe2)3 NH3/Ar 130—250 Si (100), 4H-SiC (0002) 薄膜生长 PE-ALD 2800 [42]
      GaN TEG Ar/N2/H2(1∶3∶6) 350 multilayer graphene 薄膜生长 PE-ALD 60 [43]
      GaN TEG Ar/N2/H2(1∶3∶6) 300 graphene 薄膜生长 PE-ALD 60 [44]
      GaN TEG Ar/N2/H2(1∶3∶6) ≤290 stainless steel 薄膜生长 PE-ALD 60 [45]
      GaN TEG Ar/N2/H2(1∶3∶6) 200—300 Kapton 薄膜生长 PE-ALD 60 [46]
      GaN TEG Ar/N2/H2(1∶3∶6) 260 MoS2 薄膜生长 PE-ALD 60 [47]
      GaN TEG Ar/N2/H2(1∶3∶6) 260, 320 MoS2 薄膜生长 PE-ALD 60 [48]
      GaN TEG Ar/N2/H2(1∶3∶6) 280 FTO 薄膜生长 PE-ALD 60 [49]
      GaN TEG Ar/N2/H2(1∶3∶6) 280 FTO 钙钛矿太阳能电池 PE-ALD 60 [50]
      GaN TEG Ar/N2/H2(1∶3∶6) 200—280 量子点太阳能电池 PE-ALD 60 [51]
      AlN AlCl3 NH3/Ar/H2 350 p-Si (100) 薄膜生长 PE-ALD 150 [52]
      AlN TMA Ar/N2/H2(1∶3∶6) 350—300 Si (100) 薄膜生长 PE-ALD 60 [53]
      AlN TMA Ar/N2/H2(1∶3∶6) 250 Si (100), Si (111)
      sapphire
      薄膜生长 PE-ALD 60 [54]
      AlN TMA NH3 200—300 Si, sapphire 薄膜生长 PE-ALD 2500 [55]
      AlN TMA NH3 300 GaN 薄膜生长 PE-ALD 200 [56]
      AlN TMA N2/H2 200 Si (100) 薄膜生长 PE-ALD 300 [57]
      AlN TMA Ar/N2 300 (Homemade substrates) MEMS PE-ALD 975 [58]
      AlN TMA H2plasma, NH3 325—350 SiC 薄膜生长 PE-ALD 1800 [59]
      TMA NH3 325—400 SiC T-ALD
      AlN TMA N2/H2 300 4H-SiC 薄膜生长 PE-ALD 50—300 [60]
      AlN TMA NH3(Ar) 300 Si (100), Si (111) 薄膜生长 PE-ALD 100, 200 [61]
      AlN TMA NH3 350 Si 薄膜生长 PE-ALD(ICP) 200
      600
      [62]
      PE-ALD(CCP) 200
      AlN Al(C4H9)3 N2H5Cl 200—350 薄膜生长 T-ALD [63]
      AlN TMA N2/H2 300 Si (100) 薄膜生长, 电容器 PE-ALD 300 [64]
      AlN TMA Ar/N2/H2 100—250 Si (100) 薄膜生长 HCPA-ALD 25—200 [65]
      AlN TMA Ar/N2/H2 100—250 Si (100) 薄膜生长 HCPA-ALD 25—200 [66]
      AlN TMA NH3 295—342 Si, TiN 薄膜生长 T-ALD [67]
      AlN TMA N2H4 175—350 p-Si 薄膜生长 T-ALD [68]
      AlN TMA Monomethylhydrazine(MMH) 375—475 Si (100) 薄膜生长 T-ALD [69]
      AlN 三(二甲氨基)铝 NH3 300 p-Si 薄膜生长 T-ALD [70]
      AlN TMA NH3 400 GaN/AlGaN MIS-HEMT T-ALD [71]
      AlN TMA NH3 360 GaN MIS-HEMT T-ALD [72]
      AlN TMA N2& NH3 300, 350 AlGaN HEMT PE-ALD 2800 [73]
      AlN TMA NH3 400 AlGaN HEMT T-ALD [74]
      AlN TMA N2/H2 300 p-GaN LED PE-ALD [75]
      AlN TMA N2 350 AlGaN Schottky diodes PE-ALD 2800 [76]
      AlN TMA NH3 340 GaN 异质结 T-ALD [77]
      AlN TMA NH3 300 GaN 薄膜生长, 异质结 PE-ALD 200 [78]
      AlN TMA NH3 335 c-sapphire 异质结 T-ALD [79]
      InN TMI Ar/N2 250 ± 20 sapphire 薄膜生长 PE-ALD 300 [80]
      InN TMI N2/H2 200 sapphire 薄膜生长 HCPA-ALD 300 [81]
      InN TMI NH3 240—320 Si (100) 薄膜生长 PE-ALD 2400—2800 [82]
      InN TMI N2, Ar/N2, Ar/N2/H2 120—240 Si (100) 薄膜生长 HCP-ALD 50—200 [83]
      InN TMI N2/Ar 250 GaN (0001) 薄膜生长 PE-ALD 300 [84]
      InN Tris (N, N-dimethyl-N', N''-diisopropylguanidinato)
      indium (III), Tris (N, N'-diisopropylamidinato) indium
      (III), Tris(N, N'-diisopropylformamidinato) indium (III)
      Ar/NH3 200—280 Si (100) 薄膜生长 PE-ALD 2800 [85]
      InN Tris(1,3-diisopropyltriazenide)
      indium (III)
      NH3(Ar/NH3) 200—400 Si, 4H-SiC 薄膜生长 PE-ALD 2800 [86]
      InN TMI N2 190—310 Si (100), Al2O3(0001), ZnO (0001) 薄膜生长 PE-ALD 100—200 [87]
      InN TMI N2(Ar) 150—300 glass, polyimide 薄膜生长 PE-ALD 200 [88]
      InN TMI N2 180—320 GaN (0001) 薄膜生长 PE-ALD 300 [89]
      InN TMI NH3/Ar 320 4H-SiC 薄膜生长 PE-ALD 2800 [90]
      InN TMI Ar/N2/H2(1∶3∶6) 200—300 Si (100) 薄膜生长 PE-ALD 60 [91]
      下载: 导出CSV

      材料 金属前驱体 氮前驱体 沉积温度/ ℃ 沉积衬底 应用 ALD类型 等离子体功率/W 参考文献
      InGaN TMI, TEG N2/H2, N2 200 Si, quartz 薄膜生长 HCPA-ALD 300 [95]
      InGaN Ga(III) and In(III) triazenides NH3/Ar 350 Si (100)
      4H-SiC (0001)
      薄膜生长 PE-ALD 2800 [96]
      AlGaN TMA, TMG NH3/N2/H2 200 Si (100), Si (111),c-sapphire 薄膜生长 HCPA-ALD 300 [97]
      AlGaN TMA, TMI, TMG N2/Ar 350—450 Si (100),a-sapphire, GaN/a-sapphire 薄膜生长 PE-ALD 300 [98]
      InAlN 340—300
      InGaN
      AlGaN
      InGaN
      TMG, TMA, TMI N2/H2 220—300 Si 薄膜生长 PE-ALD 280 [99]
      AlGaN TMA&TEG NH3& N2 342 p-Si (100), TiN/SiO2/Si 薄膜生长 T-ALD [100]
      AlGaN TMA, TEG NH3 335 c-GaN 异质结 ALD [101]
      AlGaN TMA. TEG NH3 335 c-GaN 异质结 T-ALD [102]
      AlGaN TEG NH3 335 ℃ GaN 异质结 T-ALD [103]
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

    • [1] 瞿子涵, 赵洋, 马飞, 游经碧.原子层沉积金属氧化物缓冲层制备高性能大面积钙钛矿太阳电池. 必威体育下载 , 2024, 73(9): 098802.doi:10.7498/aps.73.20240218
      [2] 李中祥, 王淑亚, 黄自强, 王晨, 穆清.原子级控制的约瑟夫森结中Al2O3势垒层制备工艺. 必威体育下载 , 2022, 71(21): 218102.doi:10.7498/aps.71.20220820
      [3] 郭秦敏, 秦志辉.气相沉积技术在原子制造领域的发展与应用. 必威体育下载 , 2021, 70(2): 028101.doi:10.7498/aps.70.20201436
      [4] 李晔, 王茜茜, 卫会云, 仇鹏, 何荧峰, 宋祎萌, 段彰, 申诚涛, 彭铭曾, 郑新和.原子层沉积的超薄InN强化量子点太阳能电池的界面输运. 必威体育下载 , 2021, 70(18): 187702.doi:10.7498/aps.70.20210554
      [5] 张宇河, 牛冬梅, 吕路, 谢海鹏, 朱孟龙, 张红, 刘鹏, 曹宁通, 高永立.2,7-二辛基[1]苯并噻吩并[3,2-b]苯并噻吩在Cu(100)上的吸附生长以及能级结构演化. 必威体育下载 , 2016, 65(15): 157901.doi:10.7498/aps.65.157901
      [6] 李勇, 李惠琪, 夏洋, 刘邦武.原子层沉积方法制备核-壳型纳米材料研究. 必威体育下载 , 2013, 62(19): 198102.doi:10.7498/aps.62.198102
      [7] 闫大为, 李丽莎, 焦晋平, 黄红娟, 任舰, 顾晓峰.原子层沉积Al2O3/n-GaN MOS结构的电容特性. 必威体育下载 , 2013, 62(19): 197203.doi:10.7498/aps.62.197203
      [8] 董亚斌, 夏洋, 李超波, 卢维尔, 饶志鹏, 张阳, 张祥, 叶甜春.原子层沉积法 生长ZnO的性质与前驱体源量的关系研究. 必威体育下载 , 2013, 62(14): 147306.doi:10.7498/aps.62.147306
      [9] 鲍善永, 董武军, 徐兴, 栾田宝, 李杰, 张庆瑜.氧分压对Mg掺杂ZnO薄膜结晶质量和光学特性的影响. 必威体育下载 , 2011, 60(3): 036804.doi:10.7498/aps.60.036804
      [10] 孙玄, 黄煦, 王亚洲, 冯庆荣.MgB2 超薄膜的制备和性质研究. 必威体育下载 , 2011, 60(8): 087401.doi:10.7498/aps.60.087401
      [11] 任树洋, 任忠鸣, 任维丽.晶粒尺寸对气相沉积薄膜磁取向生长的影响研究. 必威体育下载 , 2011, 60(1): 016104.doi:10.7498/aps.60.016104
      [12] 陆杭军, 吴锋民.非均匀基底上三维薄膜生长的模拟研究. 必威体育下载 , 2006, 55(1): 424-429.doi:10.7498/aps.55.424
      [13] 李 勇, 孙成伟, 刘志文, 张庆瑜.磁控溅射ZnO薄膜生长的等离子体发射光谱研究. 必威体育下载 , 2006, 55(8): 4232-4237.doi:10.7498/aps.55.4232
      [14] 杨 春, 余 毅, 李言荣, 刘永华.温度对ZnO/Al2O3(0001)界面的吸附、扩散及生长初期模式的影响. 必威体育下载 , 2005, 54(12): 5907-5913.doi:10.7498/aps.54.5907
      [15] 谢国锋, 王德武, 应纯同.改进的DLA方法模拟薄膜二维生长. 必威体育下载 , 2005, 54(5): 2212-2219.doi:10.7498/aps.54.2212
      [16] 郑小平, 张佩峰, 刘 军, 贺德衍, 马健泰.薄膜外延生长的计算机模拟. 必威体育下载 , 2004, 53(8): 2687-2693.doi:10.7498/aps.53.2687
      [17] 王晓平, 谢 峰, 石勤伟, 赵特秀.晶格失配对异质外延超薄膜生长中成核特性的影响. 必威体育下载 , 2004, 53(8): 2699-2704.doi:10.7498/aps.53.2699
      [18] 钱昌吉, 高国良, 李洪, 叶高翔.无序杂质区域对沉积在胶体基底表面的金原子凝聚体分形结构的影响. 必威体育下载 , 2002, 51(9): 1960-1964.doi:10.7498/aps.51.1960
      [19] 陈敏, 魏合林, 刘祖黎, 姚凯伦.沉积粒子能量对薄膜早期生长过程的影响. 必威体育下载 , 2001, 50(12): 2446-2451.doi:10.7498/aps.50.2446
      [20] 杨 宁, 陈光华, 张 阳, 公维宾, 朱鹤孙.薄膜生长的理论模型与Monte Carlo模拟. 必威体育下载 , 2000, 49(11): 2225-2229.doi:10.7498/aps.49.2225
    计量
    • 文章访问数:3539
    • PDF下载量:127
    • 被引次数:0
    出版历程
    • 收稿日期:2023-05-23
    • 修回日期:2023-12-27
    • 上网日期:2024-01-05
    • 刊出日期:2024-02-05

      返回文章
      返回
        Baidu
        map