搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

李雨凡, 薛文清, 李玉超, 战艳虎, 谢倩, 李艳凯, 查俊伟

Research progress of flexible energy storage dielectric materials with sandwiched structure

Li Yu-Fan, Xue Wen-Qing, Li Yu-Chao, Zhan Yan-Hu, Xie Qian, Li Yan-Kai, Zha Jun-Wei
PDF
HTML
导出引用
  • 聚合物电介质材料因其高功率密度、耐击穿、安全柔韧、易加工和自愈性等特点, 被广泛应用于智能电网、新能源汽车、航空航天、国防科技等领域. 其中, 基于三明治结构设计获得具有更高储能密度和储能效率的柔性电介质材料成为近年来聚合物储能电介质领域的研究热点和常用策略. 本文从电介质的材料构成、结构设计以及制备方法等角度综述了基于三明治结构聚合物电介质薄膜在储能密度提升方面的研究进展, 阐述了三明治结构电介质材料性能调控的微观机制和协同增强机理, 并展望了其发展趋势和应用前景.
    Polymer dielectric materials show wide applications in smart power grids, new energy vehicles, aerospace, and national defense technologies due to the ultra-high power density, large breakdown strength, flexibility, easy processing, and self-healing characteristics. With the rapid development of integration, miniaturization and lightweight production of electronic devices, it is required to develop such a storage and transportation dielectric system with larger energy storage density, higher charge and discharge efficiency, good thermostability and being environmentally friendly. However, the contradiction between dielectric constant and breakdown strength of dielectric materials is the key factor and bottleneck to obtain a high performance dielectric material. It is accepted that controlling charge distribution and inhibiting charge carrier injection are important to improve the energy storage characteristics of polymer dielectrics. In recent years, the materials with sandwiched or stacking structures have demonstrated outstanding advantages in inhibiting charge injection and promoting polarization, allowing polymer dielectrics to have increased permittivity and breakdown strength at the same time. Therefore, from the perspectives of material composition, structural design, and preparation methods, this study reviews the research progress of polymer dielectric films with sandwiched structure in improving the energy storage performance. The influence of dielectric polarization, charge distribution, charge injection, interfacial barrier and electrical dendrite growth on the energy storage performance and the synergistic enhancement mechanisms in such sandwich-structured dielectric materials are systematically summarized, showing good development and vast application prospects. In brief, introducing easy polarization, wide-gap and deep-trap nanofillers has greater designability and regulation in the dielectric and breakdown properties. In addition, using the hard layer as the outer layer can reduce charge injection more effectively, resulting in a high breakdown resistance performance that is easy to achieve. The sandwiched structure design also possesses advantages over other methods in maintaining good flexibility and dielectric stability of dielectric materials, thus having become a hot-topic research area in recent years. In the future, it is necessary to combine low conductivity and high thermal conductivity of dielectric polymers to realize high temperature energy storage and efficiency. Researches on recyclable, self-repairing sandwiched insulating films are good for the service life and safety of electronic components and will further expand the application scope of dielectric polymers. Finally, effective evaluation of dielectric with sandwiched structure and energy storage performances through simulation and theoretical modeling is very helpful in revealing the breakdown mechanism and thermal failure mechanism, and also in theoretically guiding the design of polymer dielectric materials.
        通信作者:李玉超,liyuchao@lcu.edu.cn; 查俊伟,zhajw@ustb.edu.cn
      • 基金项目:国家自然科学基金(批准号: 52177020, 52277022)和大学生创新创业训练计划(批准号: CXCY2022184)资助的课题.
        Corresponding author:Li Yu-Chao,liyuchao@lcu.edu.cn; Zha Jun-Wei,zhajw@ustb.edu.cn
      • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. 52177020, 52277022) and the College Student Innovation and Entrepreneurship Training Program, China (Grant No. CXCY2022184).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

    • 材料构成 A层(含量, 厚度) B层(含量, 厚度) A-B-A三明治(25 ℃, 1 kHz)
      $\varepsilon_{\mathrm{r}} $ tanδ E/(MV·m–1) U/(J·cm–3) η/% 制备方法 U/U基体 文献
      全有机复合 PVDF (3 μm) P(VDF-TrFE-CTFE) (3 μm) 12.06 0.35 599 20.86 60 溶液涂膜 1.3 [20]
      P(VDF-HFP) (6.5 μm) PMMA (6 μm) 7 0.03 440 20.3 84 溶液浇筑 1.3 [21]
      PVDF (4 μm) P(VDF-TrFE)-PVDF (70% PVDF, volume percent, 10 μm) 12 0.03 582 23.4 65.5 溶液浇筑 1.5 [26]
      P(VH-HFP) (3 μm) P(VDF-HFP)-PMMA (25% PMMA, weight percent, 4 μm) 9 0.25 680 28 74 热压、拉伸 1.8 [27]
      P(VDF-TrFE-CFE) (4 μm) PMMA (13 μm) 5 0.05 399.1 9.7 78 静电纺丝、热压 1.7 [28]
      P(VDF-TrFE-CFE) (2 μm) PVDF (2 μm) 10.2 0.02 550.9 18.3 60 溶液涂覆 2.44 [29]
      PMMA-P(VDF-TrFE-CFE) (20% PMMA, weight percent, 4 μm) DE-P(VDF-TrFE-CFE) (15% DE, weight percent, 4 μm) 7 0.05 790 20.1 66 溶液浇筑 2.5 [30]
      Parylene (1 μm) PI (17 μm) 5.04 0.43 460 4.72 44.8 CVD 2.9 [31]
      DE-P(VDF-HFP) (30% DE, weight percent, 2.5 μm) PMMA (14.5μm) 300 11.8 89 溶液浇筑 1.45 [32]
      PEI (4.5 μm) P(VDF-TrFE-CFE) (3 μm) ~7 0.03 504 8 81 溶液浇筑 2.6 [33]
      P(VDF-TrFE-CFE) (3.4 μm) PEI (6.7 μm) ~5 0.01 275 4 80 溶液浇筑 1.3 [33]
      PVDF (6.5 μm) DE (4 μm) 10.4 0.03 438 20.92 72 溶液浇筑 1.3 [34]
      PET (2 μm) P(VDF-HFP) (5 μm) 4.5 0.01 583.2 8.2 86.4 溶液浇筑 1.17 [35]
      Fluorene polyester (7 μm) P(VDF-HFP) (4 μm) 4 0.014 564 8 86.7 溶液浇筑、热压 1.1 [36]
      PMMA (4 μm) P(VDF-TrFE-CFE) (9 μm) 4.5 0.05 7.03 78 溶液浇筑 1.55 [37]
      PVDF (9 μm) P(VDF-TrFE-CFE) (16 μm) 16 0.03 408 8.7 60 溶液浇筑、热压 2 [38]
      有机/无机杂化 BN/PVDF (2%, weight
      percent, 4 μm)
      TiO2/PVDF (3%, weight
      percent, 4 μm)
      11.42 0.03 369.9 10.17 56 溶液浇筑、热压 5 [19]
      PVDF (3 μm) BT@SiO2@PDA/PVDF (3 μm) 12 0.023 634 15.3 64 溶液浇筑 3.85 [24]
      BT/PVDF (3%, weight
      percent, 4 μm)
      PVDF (4 μm) 13.3 <0.025 505 15 60 溶液浇筑 1.6 [22]
      PVDF (4 μm) BT/PVDF (3%, 4 μm) 12.9 <0.025 519.7 19.1 68.6 溶液浇筑 2.3 [22]
      BT/PVDF (20%, volume
      percent, 5 μm)
      BT/PVDF (1%, volume
      percent, 10 μm)
      17.5 0.05 470 18.8 溶液浇筑 4.5 [39]
      BT/P(VDF-HFP) (10%, weight percent, 5 μm) BNNs (3 μm) 10.99 0.05 414.76 8.37 50 溶液浇筑 2.26 [40]
      h-BN (70 nm) PVDF (12 μm) ~9.5 0.024 464.7 19.26 52.2 CVD、热压 2.7 [41]
      BT@HPC/PVDF (1%, weight percent, 5 μm) PVDF (5 μm) 15 0.02 360 10.2 77 旋涂 5.1 [42]
      h-BN (2 μm) PC (12 μm) 3.15 0.015 5.01 80.82 静电纺丝、热压 1.16 [43]
      P(VDF-CTFE)/PMMA (3 μm) Ag@SrTiO3/P(VDF-CTFE)
      (1.5%, weight percent, 5 μm)
      7.2 0.041 635.4 24.6 86.3 溶液浇筑 6.15 [44]
      PVDF (8 μm) BST/PVDF (40%, volume
      percent, 14μm)
      ~15 0.025 230.8 7.56 68.59 溶液浇筑、热压 1.89 [45]
      BST/PVDF (20%, volume
      percent, 8 μm)
      PVDF (8 μm) 17.3 0.025 224.5 10.54 72.02 溶液浇筑、热压 2.63 [45]
      PMMA (6.6 μm) P(VDF-HPF)/GO (2%, weight percent, 12 μm) 10 0.01 286 10.17 77 溶液浇筑 6.78 [46]
      BN/PVDF (8 μm) BT/PVDF (8 μm) 12 0.02 370 6.2 55 溶液浇筑 1.55 [47]
      BT-np/PVDF (10%, volume
      percent, 3.5 μm)
      BT-nf/PVDF (2%, volume
      percent, 5.5 μm)
      10.5 0.015 453 9.72 逐层流延 2.43 [48]
      BT/PMMA (1%, weight
      percent, 5 μm)
      BT/PMMA(9%, weight
      percent, 10 μm)
      7.15 0.05 501.4 6.08 溶液浇筑 4.05 [49]
      P(VDF-HFP) (5 μm) Ag@BN/PEI (5%, weight
      percent, 5 μm)
      5.9 0.018 510 11 80 热压法 [50]
      PVDF (5 μm) NBT@TO/PVDF (6%, weight percent, 10 μm) 12 0.025 304 15.42 66.12 逐层浇筑 3.8 [51]
      PVDF (10 μm) PPy/TiO2(30%, weight
      percent, 20 μm)
      16 0.02 99 2.68 66.7 静电纺丝、热压 1.1 [52]
      BZCT/PVDF (3 l%, volume
      percent, 10 μm)
      Fe3O4@BNNS/PVDF (5%, volume
      percent, 10 μm)
      16 0.03 350 8.9 溶液浇筑、热压 2.3 [53]
      BN/PVDF (10 %, weigh
      percent, 4 μm)
      BST/PVDF (8%, weigh
      percent, 8 μm)
      12 0.025 588 20.5 60 溶液浇筑 4 [54]
      注: Na0.5Bi0.5TiO3@TiO2=NBT@TO, hollow porous carbon=HPC, BT-np (nf)= BT纳米颗粒(纳米片), Polypyrrole=PPy, 0.5 Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3=BZCT, polyacrylate elastomer=DE.
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

    • [1] 卓俊添, 林铭浩, 张齐艳, 黄双武.热塑性聚酰亚胺/氧化铝三明治结构柔性电介质薄膜的设计制备及其高温介电储能性能研究. 必威体育下载 , 2024, 0(0): .doi:10.7498/aps.73.20240838
      [2] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福.基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 必威体育下载 , 2024, 73(7): 078401.doi:10.7498/aps.73.20231846
      [3] 郑明, 杨健, 张怡笑, 关朋飞, 程奥, 范贺良.Sm3+掺杂0.94Bi0.5Na0.5TiO3-0.06BaTiO3无机多功能陶瓷的储能行为和光致发光性质. 必威体育下载 , 2023, 72(17): 177801.doi:10.7498/aps.72.20230685
      [4] 殷敬伟, 马丁一, 张宇翔, 生雪莉.极地海冰声波导建模综述. 必威体育下载 , 2022, 71(8): 084301.doi:10.7498/aps.71.20211950
      [5] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧.基于柔性超构材料宽带调控太赫兹波的偏振态. 必威体育下载 , 2022, 71(18): 187802.doi:10.7498/aps.71.20220801
      [6] 李燕, 贺红, 党威武, 陈雪莲, 孙璨, 郑嘉璐.钙钛矿太阳电池中各功能层的光辐照稳定性研究进展. 必威体育下载 , 2021, 70(9): 098402.doi:10.7498/aps.70.20201762
      [7] 玄鑫淼, 王加恒, 毛彦琦, 叶利娟, 张红, 李泓霖, 熊元强, 范嗣强, 孔春阳, 李万俊.基于云母衬底生长的非晶Ga2O3柔性透明日盲紫外光探测器研究. 必威体育下载 , 2021, 70(23): 238502.doi:10.7498/aps.70.20211039
      [8] 董久锋, 邓星磊, 牛玉娟, 潘子钊, 汪宏.面向高温介电储能应用的聚合物基电介质材料研究进展. 必威体育下载 , 2020, 69(21): 217701.doi:10.7498/aps.69.20201006
      [9] 蓝顺, 潘豪, 林元华.柔性无机铁电薄膜的制备及其应用. 必威体育下载 , 2020, 69(21): 217708.doi:10.7498/aps.69.20201365
      [10] 谈溥川, 赵超超, 樊瑜波, 李舟.自驱动柔性生物医学传感器的研究进展. 必威体育下载 , 2020, 69(17): 178704.doi:10.7498/aps.69.20201012
      [11] 游家学, 王锦程, 王理林, 王志军, 李俊杰, 林鑫.悬浮液凝固研究进展. 必威体育下载 , 2019, 68(1): 018101.doi:10.7498/aps.68.20181645
      [12] 贾宁, 王善朋, 陶绪堂.中远红外非线性光学晶体研究进展. 必威体育下载 , 2018, 67(24): 244203.doi:10.7498/aps.67.20181591
      [13] 熊开欣, 席昆, 鲍磊, 张忠良, 谭志杰.脱氧核糖核酸柔性的分子动力学模拟:Amber bsc1和bsc0力场的对比研究. 必威体育下载 , 2018, 67(10): 108701.doi:10.7498/aps.67.20180326
      [14] 王承伟, 赵全忠, 钱静, 黄媛媛, 王关德, 李阳博, 柏锋, 范文中, 李虹瑾.黑体辐射法测量电介质内部被超短激光脉冲加工后的温度. 必威体育下载 , 2016, 65(12): 125201.doi:10.7498/aps.65.125201
      [15] 刘海文, 朱爽爽, 文品, 覃凤, 任宝平, 肖湘, 侯新宇.基于发卡式开口谐振环的柔性双频带超材料. 必威体育下载 , 2015, 64(3): 038101.doi:10.7498/aps.64.038101
      [16] 柴玉华, 郭玉秀, 卞伟, 李雯, 杨涛, 仪明东, 范曲立, 解令海, 黄维.柔性有机非易失性场效应晶体管存储器的研究进展. 必威体育下载 , 2014, 63(2): 027302.doi:10.7498/aps.63.027302
      [17] 董京, 柴玉华, 赵跃智, 石巍巍, 郭玉秀, 仪明东, 解令海, 黄维.柔性有机场效应晶体管研究进展. 必威体育下载 , 2013, 62(4): 047301.doi:10.7498/aps.62.047301
      [18] 张宪刚, 宗亚平, 吴艳.相场再结晶储能释放模型与显微组织演变的模拟研究. 必威体育下载 , 2012, 61(8): 088104.doi:10.7498/aps.61.088104
      [19] 丁佩, 周强, 胡伟琴, 蔡根旺, 梁二军.利用电介质柱共振器实现电磁响应模式可转变的电磁超介质. 必威体育下载 , 2011, 60(5): 054102.doi:10.7498/aps.60.054102
      [20] 韩 永, 王体健, 饶瑞中, 王英俭.大气气溶胶物理光学特性研究进展. 必威体育下载 , 2008, 57(11): 7396-7407.doi:10.7498/aps.57.7396
    计量
    • 文章访问数:2329
    • PDF下载量:97
    • 被引次数:0
    出版历程
    • 收稿日期:2023-04-16
    • 修回日期:2023-06-24
    • 上网日期:2024-01-15
    • 刊出日期:2024-01-20

      返回文章
      返回
        Baidu
        map