-
光热传感对于智能穿戴设备的开发至关重要. 然而, 设计合成具有合适多波长发射的发光材料, 并在单一材料体系中利用多组探针构建宽温度范围的高灵敏温度传感器是一个巨大挑战. 本研究采用高温固相法成功制备了Li 0.9K 0.1NbO 3:Pr 3+/Er 3+单掺及双掺荧光粉. 通过X射线衍射仪、扫描电子显微镜、荧光光谱仪以及自制的加热装置对其结构、形貌及激发波长和温度依赖的荧光特性进行了表征. 详细研究了Er 3+单掺与Pr 3+, Er 3+共掺样品的上/下转换荧光及Er 3+的双模荧光温度传感特性. 结果表明: Pr 3+掺杂优化了Li 0.9K 0.1NbO 3:Er 3+荧光粉中源自于Er 3+离子热耦合能级的双模光学测温性能. 本研究为温度探测提供了材料基础和光学测温技术.Photothermal sensing is crucial in developing smart wearable devices. However, designing and synthesizing luminescent materials with suitable multi-wavelength emission and constructing multiple sets of probes in a single material system is a huge challenge for constructing sensitive temperature sensors with a wide temperature range. In this paper, Pr 3+, Er 3+single-doped and double-doped Li 0.9K 0.1NbO 3phosphors are successfully prepared by high temperature solid phase method, and their structures, morphologies, excitation wavelengths and temperature-dependent fluorescence properties are characterized by XRD, SEM, fluorescence spectrometer and self-made heating device. Firstly, the photoluminescences of the synthesized series of samples are investigated. The results show that comparing with the single-doped Li 0.9K 0.1NbO 3: Er 3+sample, the up/down-conversion spectra of Pr 3+, Er 3+co-doped phosphors under 808 nm/380 nm excitation show that the green fluorescence emission of Er 3+is enhanced. In addition, under 980 nm excitation, Pr 3+can effectively regulate the fluorescence energy level population pathway, so that the electrons are more effectively arranged in the 2H 11/2and 4S 3/2energy levels in the excitation process. The red emission is weakened and the green emission is enhanced, which improves the signal resolution of the fluorescent material and has a significant influence on the optical temperature measurement. Secondly, the up-conversion fluorescence property of Er 3+under 808 nm/980 nm laser excitation in Li 0.9K 0.1NbO 3:Er 3+and Li 0.9K 0.1NbO 3:Pr 3+,Er 3+phosphors are investigated. The results show that the red and green fluorescence emissions of Er 3+are two-photon processes. Finally, the up/down-conversion dual-mode temperature sensing properties of Er 3+in Li 0.9K 0.1NbO 3:Er 3+and Li 0.9K 0.1NbO 3:Pr 3+, Er 3+phosphors are investigated. It is found that both materials have good optical temperature measurement performances. The Pr 3+doping optimizes the dual-mode optical temperature measurement performances of Li 0.9K 0.1NbO 3:Er 3+phosphors derived from the thermal coupling energy level of Er 3+ions. In addition, the up/down-conversion fluorescence mechanism of Li 0.9K 0.1NbO 3:Er 3+and Li 0.9K 0.1NbO 3:Er 3+, Pr 3+phosphors are proposed, and the enhanced green fluorescence by Pr 3+co-doping is attributed to the energy transfer from Pr 3+ions to Er 3+ions, leading to the increase of green fluorescence level population and the decrease of red fluorescence level population of the Er 3+ions. This new dual-mode optical temperature measurement material provides a material basis and optical temperature measurement technology for exploring other temperature measurement materials.
-
Keywords:
- niobate/
- up/down-conversion/
- multi-wavelength/
- temperature detection
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] -
Materials Wavelength/nm Sr-Max/(10–2K–1) Sa-Max/(10–2K–1) References SrSnO3:Er 975 nm 0.997(294 K) 0.791(368 K) [30] BaBiNb2O9:Er 980 nm 0.959(300 K) 0.996(483 K) [36] La2CaZnO5:Er 378 nm 1.454(300 K) — [31] Sr2Gd8(SiO4)6O2:Er 379 nm — 0.34(463 K) [32] Ca3Bi(PO4)3:Er 376 nm 1.21(300 K) 0.312(473 K) [33] La2Mo2O9:Er 980 nm 1.16(293 K) 0.527(493 K) [37] (K, Na)NbO3:Er 980 nm
375 nm0.96(303 K)
16.17(80 K)0.28(433 K)
0.37(280 K)[38] Cs3Bi2Cl9:Er 808 nm
980 nm1.4(303 K)
1.38(303 K)0.62(573 K)
0.61(573 K)[13] Li0.9K0.1NbO3:Er 380 nm
808 nm
980 nm0.97(303 K)
1.286(297 K)
1.221(297 K)0.44(463 K)
0.89(443 K)
0.81(443 K)This
workMaterials Wavelength/nm Sr-Max/(10–2K–1) Sa-Max/(10–2K–1) References La2MgGeO6:Bi, Er 980 nm 1.23(293 K) 0.94(473 K) [39] K3Gd(PO4)2:Yb, Er, Tm 980 nm 1.35(300 K) 0.456(608 K) [40] NaLuF4:Er, Tm 1532 nm 1.265(293 K) 0.4(519 K) [41] BiVO4:Er, Tm 980 nm 1.1(293 K) 0.7(473 K) [42] 1550 nm 1.1(293 K) 0.56(453 K) Y2SiO5:Er, Tm 808 nm 0.395(298 K) — [29] KYb(MoO4)2:Er, Gd 980 nm 1.1(303 K) 0.97(513 K) [25] KYb(MoO4)2:Er, La 1.1(303 K) 0.95(513 K) KYb(MoO4)2:Er, Y 1.11(303 K) 0.91(513 K) Li0.9K0.1NbO3:Pr, Er 380 nm 1.12(296 K) 0.54(434 K) This
work808 nm 1.284(296 K) 1.12(443 K) 980 nm 1.106(296 K) 0.83(443 K) -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42]
计量
- 文章访问数:1674
- PDF下载量:72
- 被引次数:0