搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

孙惠英, 钱祥利, 陈天禄, 单增罗布, 冯有亮, 高启, 苟全补, 郭义庆, 胡红波, 康明铭, 厉海金, 刘成, 刘茂元, 刘伟, 乔冰强, 王旭, 王振, 辛广广, 姚玉华, 袁强, 张毅

Expectation on observations of Fermi-LAT gamma-ray sources using the HADAR experiment

Sun Hui-Ying, Qian Xiang-Li, Chen Tian-Lu, Danzengluobu, Feng You-Liang, Gao Qi, Gou Quan-Bu, Guo Yi-Qing, Hu Hong-Bo, Kang Ming-Ming, Li Hai-Jin, Liu Cheng, Liu Mao-Yuan, Liu Wei, Qiao Bing-Qiang, Wang Xu, Wang Zhen, Xin Guang-Guang, Yao Yu-Hua, Yuan Qiang, Zhang Yi
PDF
HTML
导出引用
  • 高海拔天体辐射探测(high altitude detection of astronomical radiation, HADAR)实验是一个新型的采用纯水作为介质的大气切伦科夫望远镜实验阵列, 其采用大口径半球型透镜来收集大气切伦科夫光, 以实现对10 GeV—10 TeV能量段的伽马射线和宇宙线的探测. HADAR具有低阈能、高灵敏度和传统成像大气切伦科夫望远镜所不具备的大视场优势, 可以对天区进行连续扫描观测, 因此将成为全天伽马源的理想观测仪器和爆发源、时变源的理想搜寻探测器. 本文基于Fermi-LAT的最新伽马射线源表, 详细研究了HADAR实验对这些源的观测能力. 对银河系外的源, 将这些源的能谱加入河外背景光吸收效应外推至甚高能段. 通过对这些源的显著性进行模拟研究, 结果显示HADAR运行一年预期有93个伽马射线源以大于5倍的显著性标准偏差被观测到, 其中包括45个银河系内的源, 39个银河系外的源, 3个未知类型的源和6个未关联类型的源.
    High altitude detection of astronomical radiation (HADAR) is an innovative array of atmospheric Cherenkov telescopes that employs pure water as its medium. By utilizing large-aperture hemispherical lenses, HADAR can capture atmospheric Cherenkov light, enabling the detection of gamma rays and cosmic rays in the energy range of 10 GeV to 10 TeV. Compared to traditional Imaging Atmospheric Cherenkov telescopes, HADAR offers distinct advantages such as a low energy threshold, high sensitivity, and a wide field of view. The telescope mainly consists of a hemispherical lens with a diameter of 5 m acting as a Cherenkov light collector, a cylindrical metal tank with a 4 m radius and 7 m height, and an imaging system at the bottom of the tank. The sky region covered by HADAR is much larger than the current generation of Imaging Atmospheric Cherenkov Telescopes. The field of view of HADAR can reach up to 60 degrees. Its continuous scanning capability allows for comprehensive observations of gamma-ray sources throughout the entire celestial sphere, making it an ideal instrument for studying transient and variable sources. In this study, the observational capabilities of HADAR are thoroughly investigated using the latest 4FGL-DR3 and 4LAC-DR3 gamma-ray source catalogs from Fermi-LAT. For extragalactic sources, the energy spectra in the high energy range have been extrapolated to the very high energy range, taking into account the absorption effect caused by extragalactic background light. By comparing the extrapolated results with existing VHE experimental data, the feasibility of this extrapolation method has been demonstrated. Through simulated analyses of the significance of these sources, it is anticipated that HADAR will detect a total of 93 gamma-ray sources with a significance exceeding 5 standard deviations during one year of operation. These sources comprise 45 galactic sources, 39 extragalactic sources, 3 sources of unknown type, and 6 unassociated sources.
        通信作者:钱祥利,qianxl@sdmu.edu.cn; 郭义庆,guoyq@ihep.ac.cn;
      • 基金项目:国家自然科学基金(批准号: 12263005, 12005120, 12147218, U1831208, U2031110)和西藏大学宇宙线教育部重点实验室(批准号: KLCR-202201)资助的课题
        Corresponding author:Qian Xiang-Li,qianxl@sdmu.edu.cn; Guo Yi-Qing,guoyq@ihep.ac.cn;
      • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. 12263005, 12005120, 12147218, U1831208, U2031110) and the Key Laboratory of Cosmic Ray of the Ministry of Education of China, Tibet University (Grant No. KLCR-202201)
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

    • Experiment Hemisphere/(N, S) FOV/sr Energy threshold Angular resolution/(°) Sensitivity/Crab Ref.
      Fermi-LAT 2FHL space 2.7 10 GeV–2 TeV 0.1°(30 GeV) 3%–4% [24]
      LHAASO-WCDA N 1.5 100 GeV–30 TeV 0.4°(2 TeV) < 10% [29]
      HAWC N 1.5 100 sGeV–10 sTeV ~0.5° 5%–10% [9]
      H.E.S.S. S 0.006 30 GeV–100 TeV 0.08° 0.4%–2.0% [7]
      MAGIC N 0.003 50 GeV–10 TeV ~0.1° ~0.7% [25]
      CTA N, S 0.0048–0.015 20 GeV–300 TeV 0.07°(1 TeV) 0.2%–0.4% [4]
      HADAR N 0.84 10 GeV–10 TeV 0.4°(100 GeV) 1.3%–2.4% [22]
      下载: 导出CSV

      4FGL Name Counterpart Type Class Redshift Model E0/GeV F0/(TeV–1·cm–2·s–1) Γ β
      J0222.6+4301 3C 66A BLL ISP 0.444 LP 1.197 1.03 × 10–5 1.89 0.04
      J1221.3+3010 1ES 1218+304 BLL EHSP 0.184 PL 4.501 1.83 × 10–7 1.71
      J1427.0+2348 PKS 1424+240 BLL HSP 0.604 LP 1.205 7.03 × 10–6 1.71 0.06
      J1555.7+1111 PG 1553+113 BLL HSP 0.360 LP 1.802 3.84 × 10–6 1.54 0.07
      下载: 导出CSV

      4FGL-DR3 source classes Number of sources in 4FGL-DR3 Number of sources in HADAR FOV Expected to be observed by HADAR in 1 a Expected to be observed by HADAR in 5 a
      Young / Millisecond pulsars 292 106 34 52
      PWNe, SNR 63 22 10 13
      SNR / PWNe 114 26 0 1
      Globular cluster 35 5 0 0
      Star-forming region 5 2 1 1
      High-mass Binary, Low-mass Binary, Binary, Nova 30 6 0 0
      BL Lacs 1458 492 34 66
      FSRQs 792 376 2 5
      Blazar candidate of uncertain type 1493 88 0 2
      Nonblazar AGN (RDG, AGN, SSRQ, CSS, NLSY1, SEY) 71 36 3 8
      Starburst galaxy 8 3 0 0
      Normal galaxy 6 3 0 0
      Unkown 134 48 3 7
      Unassociated 2157 592 6 25
      Total 6658 1805 93 180
      下载: 导出CSV

      4FGL name Counterpart R.A. Dec. Type Redshift Model E0/GeV F0/(TeV–1·cm–2·s–1) Γ β Time/h S/σ
      J0112.1+2245 S2 0109+22 18.03 22.75 BLL 0.265 LP 0.769 1.46 × 10–5 1.99 0.060 277.8 9.05
      J0211.2+1051 MG1J021114+1051 32.81 10.86 BLL 0.200 LP 0.922 7.51 × 10–6 2.02 0.042 196.3 6.47
      J0222.6+4302 3C 66A 35.67 43.04 BLL 0.444 LP 1.246 8.40 × 10–6 1.89 0.046 264.2 17.9
      J0319.8+4130 NGC 1275 49.96 41.51 RDG 0.018 LP 0.918 4.36 × 10–5 2.05 0.069 271.9 54.6
      J0521.7+2112 TXS 0518+211 80.44 21.21 bll 0.108 LP 1.541 4.64 × 10–6 1.86 0.045 271.0 50.2
      J0620.7+2643 RX J0620.6+2644 95.18 26.73 bll 0.134 PL 17.415 1.22 × 10–9 1.55 290.3 5.1
      J0648.7+1516 RX J0648.7+1516 102.19 15.28 bll 0.179 LP 3.248 1.22 × 10–7 1.60 0.056 234.3 10.9
      J0650.7+2503 1ES 0647+250 102.7 25.05 bll 0.203 LP 2.067 8.44 × 10–7 1.65 0.041 286.0 32.9
      J0738.1+1742 PKS 0735+17 114.54 17.71 bll 0.424 LP 1.623 2.25 × 10–6 1.97 0.067 251.3 5.2
      J0809.8+5218 1ES 0806+524 122.46 52.31 BLL 0.138 LP 1.342 1.91 × 10–6 1.83 0.023 193.9 15.1
      J0915.9+2933 Ton 0396 138.99 29.55 bll 0.190 LP 1.390 9.28 × 10–7 1.74 0.081 294.7 7.4
      J1015.0+4926 1H 1013+498 153.77 49.43 bll 0.212 LP 1.044 6.00 × 10–6 1.75 0.044 220.0 27.9
      J1058.6+5627 TXS 1055+567 164.67 56.46 BLL 0.143 LP 1.102 2.38 × 10–6 1.86 0.050 149.4 6.1
      J1104.4+3812 Mkn 421 166.12 38.21 BLL 0.030 PLEC 1.258 1.79 × 10–5 1.74 284.9 519.6
      J1117.0+2013 RBS 0958 169.27 20.23 bll 0.139 PL 1.964 3.12 × 10–7 1.95 266.1 5.0
      J1120.8+4212 RBS 0970 170.20 42.20 bll 0.124 LP 2.416 2.11 × 10–7 1.55 0.046 268.6 23.9
      J1150.6+4154 RBS 1040 177.66 41.91 bll 0.320 LP 1.949 4.71 × 10–7 1.55 0.135 270.0 7.2
      J1217.9+3007 B2 1215+30 184.48 30.12 BLL 0.130 LP 1.248 5.77 × 10–6 1.87 0.043 295.1 37.7
      J1221.3+3010 PG 1218+304 185.34 30.17 bll 0.184 LP 2.590 5.27 × 10–7 1.65 0.029 295.2 37.4
      J1221.5+2814 W Comae 185.38 28.24 bll 0.102 LP 0.781 6.00 × 10–6 2.11 0.024 293.1 5.5
      J1230.2+2517 ON 246 187.56 25.30 bll 0.135 LP 0.800 6.66 × 10–6 2.02 0.056 286.7 5.8
      J1230.8+1223 M 87 187.71 12.39 rdg 0.004 LP 1.124 1.30 × 10–6 2.00 0.036 210.5 5.3
      J1417.9+2543 1E 1415.6+2557 214.49 25.72 bll 0.237 LP 8.155 6.13 × 10–9 1.28 0.138 287.9 5.1
      J1427.0+2348 PKS 1424+240 216.76 23.80 BLL 0.604 LP 1.254 5.70 × 10–6 1.71 0.057 281.8 21.7
      J1428.5+4240 H 1426+428 217.13 42.68 bll 0.129 PL 5.135 2.69 × 10–8 1.65 266.1 10.3
      J1449.5+2746 B2 1447+27 222.40 27.77 rdg 0.031 PL 14.614 5.37 × 10–10 1.46 292.4 6.8
      J1555.7+1111 PG 1553+113 238.93 11.19 BLL 0.360 LP 3.802 1.16 × 10–6 1.57 0.095 199.5 56.4
      J1653.8+3945 Mkn 501 253.47 39.76 BLL 0.033 LP 1.508 3.78 × 10–6 1.75 0.018 279.5 125.1
      J1725.0+1152 1H 1720+117 261.27 11.87 bll 0.180 LP 2.216 7.55 × 10–7 1.76 0.056 205.9 14.5
      J1728.3+5013 I Zw 187 262.08 50.23 bll 0.055 PL 2.983 1.82 × 10–7 1.79 213.2 21.1
      J1838.8+4802 GB6J1838+4802 279.71 48.04 bll 0.300 LP 1.631 8.39 × 10–7 1.78 0.040 231.3 6.7
      J1904.1+3627 MG2J190411+3627 286.03 36.45 bll 0.078 PL 5.074 2.01 × 10–8 1.80 289.7 5.8
      J2116.2+3339 B2 2114+33 319.06 33.66 bll 0.350 LP 1.653 1.10 × 10–6 1.75 0.095 294.4 7.1
      J2202.7+4216 BL Lac 330.69 42.28 BLL 0.069 LP 0.871 4.07 × 10–5 2.12 0.059 268.2 27.4
      J2232.6+1143 CTA 102 338.15 11.73 FSRQ 1.037 PLEC 1.082 4.34 × 10–5 2.27 204.5 5.9
      J2250.0+3825 B3 2247+381 342.51 38.42 bll 0.119 PL 5.338 2.55 × 10–8 1.74 284.2 7.9
      J2253.9+1609 3C 454.3 343.50 16.15 FSRQ 0.859 PLEC 0.892 1.32 × 10–4 2.38 240.7 10.9
      J2323.8+4210 1ES 2321+419 350.97 42.18 bll 0.059 LP 1.857 5.31 × 10–7 1.80 0.068 268.7 11.0
      J2347.0+5141 1ES 2344+514 356.77 51.70 bll 0.044 LP 1.911 7.15 × 10–7 1.74 0.039 199.8 29.2
      下载: 导出CSV

      4FGL Name Counterpart R.A. Dec. Type Model $ E_0 $/GeV F0/(TeV–1·cm–2·s–1) Γ β Time/h S/σ
      J0030.4+0451 PSR J0030+0451 7.61 4.86 MSP PLEC 1.360 7.36 × 10–6 2.08 130.1 40.6
      J0102.8+4839 PSR J0102+4839 15.71 48.66 MSP PLEC 1.378 1.42 × 10–6 2.18 226.4 6.0
      J0106.4+4855 PSR J0106+4855 16.61 48.93 PSR PLEC 1.578 1.66 × 10–6 2.11 224.2 14.2
      J0218.1+4232 PSR J0218+4232 34.53 42.55 MSP PLEC 0.820 1.20 × 10–5 2.35 266.8 6.2
      J0220.1+1155 35.04 11.92 PL 16.622 3.98 × 10–10 1.57 206.2 5.6
      J0340.3+4130 PSR J0340+4130 55.10 41.51 MSP PLEC 1.659 1.38 × 10–6 2.03 271.9 24.6
      J0357.8+3204 PSR J0357+3205 59.46 32.08 PSR PLEC 1.104 1.26 × 10–5 2.30 295.5 19.3
      J0425.6+5522e SNR G150.3+04.5 66.42 55.37 SNR LP 7.240 1.19 × 10–7 1.64 0.047 161.8 123.6
      J0534.5+2201i Crab Nebula 83.63 22.02 PWN LP 10.000 5.50 × 10–7 1.75 0.080 274.7 639.6
      J0540.3+2756e Sim 147 85.10 27.94 SNR LP 1.192 5.50 × 10–6 2.07 0.081 292.7 11.1
      J0554.1+3107 PSR J0554+3107 88.55 31.12 PSR PLEC 1.066 4.06 × 10–6 2.34 295.5 5.1
      J0605.1+3757 PSR J0605+3757 91.28 37.96 MSP PLEC 1.507 7.88 × 10–7 2.18 285.7 5.3
      J0617.2+2234e IC 443 94.31 22.58 SNR LP 4.551 2.58 × 10–6 2.28 0.123 277.1 37.6
      J0620.9+2201 95.23 22.02 PL 20.913 6.45 × 10–10 1.61 274.7 5.7
      J0631.5+1036 PSR J0631+1036 97.88 10.60 PSR PLEC 1.540 2.52 × 10–6 2.20 193.8 11.1
      J0631.8+0645 PSR J0631+0646 97.96 6.76 PSR PLEC 2.258 7.60 × 10–7 2.22 152.9 5.9
      J0633.7+0632 PSR J0633+0632 98.44 6.54 PSR PLEC 1.527 8.13 × 10–6 2.22 150.4 26.3
      J0633.9+1746 PSR J0633+1746 98.48 17.77 PSR PLEC 1.670 3.19 × 10–4 2.10 251.7 575.7
      J0650.6+2055 NVSS J065035+205556 102.66 20.93 unk LP 3.643 4.42 × 10–8 1.63 0.096 269.6 9.5
      J0751.2+1808 PSR J0751+1807 117.80 18.14 MSP PLEC 1.643 9.45 × 10–7 2.06 254.1 13.1
      J1312.7+0050 PSR J1312+0051 198.19 0.84 MSP PLEC 1.301 2.01 × 10–6 2.15 76.3 5.7
      J1554.2+2008 238.55 20.15 PL 4.619 1.14 × 10–8 1.82 265.6 5.0
      J1816.5+4510 PSR J1816+4510 274.15 45.17 MSP PLEC 1.171 1.48 × 10–6 2.14 251.6 6.1
      J1836.2+5925 PSR J1836+5925 279.06 59.43 PSR PLEC 1.428 6.64 × 10–5 2.07 112.6 388.8
      J1846.3+0919 PSR J1846+0919 281.60 9.33 PSR PLEC 1.458 3.78 × 10–6 2.19 181.0 14.9
      J1854.5+2050 283.64 20.84 PL 103.233 2.68 × 10–11 1.01 269.2 34.8
      J1857.7+0246e HESS J1857+026 284.45 2.77 PWN PL 6.063 2.25 × 10–7 2.13 103.1 19.5
      J1907.9+0602 PSR J1907+0602 286.98 6.04 PSR PLEC 1.898 1.39 × 10–5 2.37 144.4 31.3
      J1910.8+2856 NVSS J191052+285621 287.72 28.94 unk PL 7.243 6.08 × 10–9 1.80 294.1 7.1
      J1911.0+0905 W 49B 287.76 9.09 snr LP 4.552 7.74 × 10–7 2.28 0.112 178.6 8.5
      J1918.0+0331 NVSS J191803+033032 289.51 3.52 unk PL 12.647 2.39 × 10–9 1.72 113.0 6.2
      J1923.2+1408e W 51C 290.82 14.14 SNR LP 2.768 5.08 × 10–6 2.21 0.109 225.4 25.9
      J1924.3+1628 291.10 16.48 PL 22.893 7.99 × 10–10 1.76 243.1 7.7
      J1952.9+3252 PSR J1952+3252 298.25 32.88 PSR PLEC 1.618 9.92 × 10–6 2.29 295.1 39.3
      J1954.3+2836 PSR J1954+2836 298.59 28.60 PSR PLEC 1.519 8.08 × 10–6 2.32 293.7 23.1
      J1958.7+2846 PSR J1958+2846 299.68 28.77 PSR PLEC 1.356 1.13 × 10–5 2.35 293.9 21.1
      J2017.4+0602 PSR J2017+0603 304.35 6.05 MSP PLEC 1.800 2.20 × 10–6 1.98 144.6 43.2
      J2017.9+3625 PSR J2017+3625 304.49 36.43 PSR PLEC 1.467 6.99 × 10–6 2.53 289.8 5.7
      J2021.0+4031e gamma Cygni 305.27 40.52 SNR LP 7.758 2.07 × 10–7 1.88 0.060 276.4 95.9
      J2021.1+3651 PSR J2021+3651 305.28 36.86 PSR PLEC 1.842 2.62 × 10–5 2.32 288.8 114.0
      J2028.3+3331 PSR J2028+3332 307.08 33.53 PSR PLEC 1.467 6.57 × 10–6 2.32 294.6 17.5
      J2028.6+4110e Cygnus X 307.17 41.17 SFR LP 2.036 2.90 × 10–5 2.04 0.033 273.5 368.3
      J2030.0+3641 PSR J2030+3641 307.51 36.69 PSR PLEC 1.650 3.92 × 10–6 2.33 289.2 12.6
      J2030.9+4416 PSR J2030+4415 307.73 44.27 PSR PLEC 1.284 6.77 × 10–6 2.47 257.2 5.4
      J2032.2+4127 PSR J2032+4127 308.06 41.46 PSR PLEC 2.918 3.31 × 10–6 2.26 272.2 47.2
      J2035.0+3632 PSR J2034+3632 308.76 36.54 MSP PLEC 2.456 5.99 × 10–7 2.17 289.5 11.3
      J2043.3+1711 PSR J2043+1711 310.84 17.19 MSP PLEC 1.222 3.47 × 10–6 2.10 247.9 20.9
      J2055.8+2540 PSR J2055+2539 313.96 25.67 PSR PLEC 1.279 8.39 × 10–6 2.18 287.7 26.6
      J2111.4+4606 PSR J2111+4606 317.86 46.10 PSR PLEC 1.305 4.84 × 10–6 2.26 245.4 11.9
      J2214.6+3000 PSR J2214+3000 333.67 30.01 MSP PLEC 1.090 5.97 × 10–6 2.06 295.1 28.8
      J2301.9+5855e CTB 109 345.49 58.92 SNR LP 3.461 1.57 × 10–7 1.91 0.054 119.2 6.8
      J2302.7+4443 PSR J2302+4442 345.69 44.72 MSP PLEC 2.049 2.04 × 10–6 2.02 254.5 55.8
      J2304.0+5406e 346.01 54.11 LP 14.034 1.58 × 10–8 1.76 0.127 175.6 18.0
      J2323.4+5849 Cas A 350.86 58.82 snr LP 2.232 1.38 × 10–6 1.87 0.076 120.5 20.9
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

    • [1] 钱祥利, 孙惠英, 陈天禄, 单增罗布, 冯有亮, 高启, 苟全补, 郭义庆, 胡红波, 康明铭, 厉海金, 刘成, 刘茂元, 刘伟, 乔冰强, 王旭, 王振, 辛广广, 姚玉华, 袁强, 张毅.HADAR实验对活动星系核伽马射线辐射观测的预期研究. 必威体育下载 , 2023, 72(4): 049501.doi:10.7498/aps.72.20221976
      [2] 熊俊, 安红海, 王琛, 张振驰, 矫金龙, 雷安乐, 王瑞荣, 胡广月, 王伟, 孙今人.长短脉冲联合驱动双层结构靶优化伽马射线的产生. 必威体育下载 , 2022, 71(21): 215201.doi:10.7498/aps.71.20212042
      [3] 任杰, 阮锡超, 陈永浩, 蒋伟, 鲍杰, 栾广源, 张奇玮, 黄翰雄, 王朝辉, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 顾旻皓, 韩长材, 韩子杰, 贺国珠, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 易晗, 于莉, 余滔, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏.中国散裂中子源反角白光中子源束内伽马射线研究. 必威体育下载 , 2020, 69(17): 172901.doi:10.7498/aps.69.20200718
      [4] 强鹏飞, 盛立志, 李林森, 闫永清, 刘哲, 周晓红.X射线聚焦望远镜光学设计. 必威体育下载 , 2019, 68(16): 160702.doi:10.7498/aps.68.20190709
      [5] 王瑞荣, 安红海, 熊俊, 谢志勇, 王伟.准单色近平行光束的X射线源. 必威体育下载 , 2018, 67(24): 240701.doi:10.7498/aps.67.20180861
      [6] 王研, 刘鑫, 黄万霞, 易明皓, 郭金川, 朱佩平.更正:线焦斑X射线源成像[必威体育下载 2016,65,219501]. 必威体育下载 , 2017, 66(8): 089901.doi:10.7498/aps.66.089901
      [7] 朱玥, 张子良, 杨彦佶, 薛荣峰, 崔苇苇, 陆波, 王娟, 陈田祥, 王于仨, 李炜, 韩大炜, 霍嘉, 胡渭, 李茂顺, 张艺, 祝宇轩, 刘苗, 赵晓帆, 陈勇.硬X射线调制望远镜低能探测器量子效率标定. 必威体育下载 , 2017, 66(11): 112901.doi:10.7498/aps.66.112901
      [8] 牟欢, 李保权, 曹阳.基于空间应用的透射式微型微束调制X射线源. 必威体育下载 , 2016, 65(14): 140703.doi:10.7498/aps.65.140703
      [9] 颜召军, 陈欣扬, 郑立新, 丁媛媛, 朱能鸿.基于色散干涉图像的拼接望远镜共相零位标定方法研究. 必威体育下载 , 2016, 65(19): 199501.doi:10.7498/aps.65.199501
      [10] 刘鑫, 易明皓, 郭金川.线焦斑X射线源成像. 必威体育下载 , 2016, 65(21): 219501.doi:10.7498/aps.65.219501
      [11] 于树海, 董磊, 刘欣悦, 凌剑勇.傅里叶望远镜重构图像虚像分析. 必威体育下载 , 2015, 64(18): 184205.doi:10.7498/aps.64.184205
      [12] 颜召军, 陈欣扬, 杨朋千, 周丹, 郑立新, 朱能鸿.基于光栅色散干涉条纹的菲佐光干涉望远镜共相检测方法研究. 必威体育下载 , 2015, 64(14): 149501.doi:10.7498/aps.64.149501
      [13] 廖宏宇, 马晓燠, 郭友明, 饶长辉, 魏凯.基于AR模型搜索迭代算法的望远镜跟踪误差分析. 必威体育下载 , 2014, 63(17): 179501.doi:10.7498/aps.63.179501
      [14] 欧建文, 张皓晶, 郑永刚, 张雄.耀变体S5 0716+714的混沌特性研究. 必威体育下载 , 2014, 63(4): 049801.doi:10.7498/aps.63.049801
      [15] 黄开, 闫文超, 李明华, 陶孟泽, 陈燕萍, 陈洁, 远晓辉, 赵家瑞, 马勇, 李大章, 高杰, 陈黎明, 张杰.kHz激光与固体靶相互作用产生的X射线源. 必威体育下载 , 2013, 62(20): 205204.doi:10.7498/aps.62.205204
      [16] 王剑, 赵宗清, 蔡达锋, 黄文忠, 何颖玲, 谷渝秋.Kα射线源半影成像研究. 必威体育下载 , 2009, 58(10): 7074-7078.doi:10.7498/aps.58.7074
      [17] 徐光, 钱列加, 王韬, 朱鹤元, 范滇元.用于超短脉冲扩展的时间望远镜. 必威体育下载 , 2004, 53(1): 93-98.doi:10.7498/aps.53.93
      [18] 孙可煦, 易荣清, 杨家敏, 王红斌, 马洪良, 陈正林, 黄天暄, 崔延莉, 郑志坚, 唐道源, 丁永坤, 温树槐, 江文勉, 赵永宽, 崔明启, 黎刚, 崔聪悟, 唐鄂生.同步辐射软X射线源用于软X射线探测元件定标. 必威体育下载 , 1997, 46(4): 650-655.doi:10.7498/aps.46.650
      [19] 吴承伟, 郭杏林.直流电场中电流变体单链的电学行为及剪切强度. 必威体育下载 , 1997, 46(8): 1500-1507.doi:10.7498/aps.46.1500
      [20] 张毅波.切伦科夫自由电子激光中自发辐射与受激辐射的关系. 必威体育下载 , 1987, 36(10): 1344-1348.doi:10.7498/aps.36.1344
    计量
    • 文章访问数:2608
    • PDF下载量:50
    • 被引次数:0
    出版历程
    • 收稿日期:2023-06-13
    • 修回日期:2023-07-28
    • 上网日期:2023-08-02
    • 刊出日期:2023-10-05

      返回文章
      返回
        Baidu
        map