-
理论预言拓扑超导体能够承载服从非阿贝尔统计的伊辛任意子—马约拉纳零能模, 因而可用于实现容错的拓扑量子计算, 是凝聚态领域最受关注的前沿课题之一. 本文重点回顾了电学输运手段在研究马约拉纳零能模中的应用. 在简要介绍拓扑超导、马约拉纳零能模和非阿贝尔统计等基本概念的基础上, 对当前实现拓扑超导的多种方案进行了总结. 重点介绍了利用低温输运手段探测马约拉纳零能模的实验方法, 涵盖了超导/纳米线中广泛使用的电子隧穿谱、库仑阻塞谱和非局域电导探测, 以及约瑟夫森器件中使用的(逆)交流约瑟夫森效应探测和电流(能量)相位关系的探测. 同时, 对利用上述测量手段得到的实验结果可能存在的平庸解释进行了必要的补充和说明. 最后对进行了总结与展望.Topological superconductors have attracted much research interest, because they were proposed to host non-abelian Ising Anyon Majorana zero modes and thus can be used to construct fault-tolerant topological quantum computers. This paper mainly reviews the electrical transport methods for detecting the presence of Majorana zero modes. First, the basic concepts of topological superconductivity, Majorana zero modes and non-Abelian statistics are introduced, followed by a summary of various schemes for implementing topological superconductivity. Then, the experimental methods for detecting topological superconductivity or Majorana zero modes by using low-temperature transport methods, including electron tunneling spectroscopy, Coulomb blockade spectroscopy and non-local conductance detection, which are widely used in superconductor/nanowire hybrid systems, are discussed. On the other hand, the measurements of the (inverse) AC Josephson effect and current (energy) phase relationships are also reviewed to identify Majorana zero modes in Josephson devices. Meanwhile, to deepen our understanding of Majorana zero modes, some mechanisms for explaining the experimental data observed in the above experiments are provided. Finally, a brief summary and outlook of the electrical transport methods of Majorana zero modes are presented.
-
Keywords:
- topological superconductivity/
- Majorana zero modes/
- zero-bias conductance peak/
- Josephson effect
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192] [193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216] [217] [218] [219] [220] [221] [222] [223] [224] [225] -
Class TRS PHS CS d= 1 d= 2 d= 3 Spinful or Spinless SC D 0 +1 0 $ Z_2^{{\gamma _{{\text{geom}}}}} $ Z(TKNN) 0 Spinful SC with TRS DIII –1 +1 1 $ Z_2^{{\gamma _{{\text{geom}}}}/2} $ $ Z_{2}^{{\text{(KM)}}} $ Z(3dW) Spinful SC with SU(2)-SRS C 0 –1 0 0 2Z(TKNN) 0 Spinful SC with SU(2)-SRS+TRS CI +1 –1 1 0 0 2Z(3dW) Spinful SC with TRS BDI +1 +1 1 Z(1dW) 0 0 注: TRS (time reversal symmetry, 时间反演对称性), PHS (particle hole symmetry, 粒子空穴对称性), CS (chiral symmetry, 手性对称性), SRS (spin rotation symmetry, 自旋旋转对称性),γgeom(几何相位),Z(TKNN)(TKNN不变量), $ Z_{2}^{{\text{(KM)}}} $ (Kane-Mele不变量),
Z(1dW)(一维缠绕数),Z(3dW)(三维缠绕数). -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192] [193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216] [217] [218] [219] [220] [221] [222] [223] [224] [225]
计量
- 文章访问数:3673
- PDF下载量:262
- 被引次数:0