-
本文利用多组态Dirac-Hartree-Fock方法计算了类铝等电子序列从Si +到Kr 23+离子基组态3s 23p 2P 1/2, 3/2能级的超精细结构常数和朗德 g因子. 通过系统评估电子关联效应对Si +和Co 14+离子中所关心原子参数的影响, 尤其是与内壳层电子相关的关联效应, 构建了可靠精确的计算模型, 除Si +离子外, 超精细结构常数和 g因子的计算误差分别控制在1%左右和10 –5的量级. 此外, 进一步分析了超精细结构常数中电子部分矩阵元和 g因子随原子序数 Z的变化规律, 并拟合了这些物理量与 Z的定量依赖关系, 利用拟合公式可以快速计算类铝离子在14 ≤ Z≤ 54区间内任意同位素的超精细结构常数和 g因子.
-
关键词:
- 超精细结构常数/
- 朗德g因子/
- 多组态Dirac-Hartree-Fock方法/
- 电子关联效应/
- 类铝离子
The highly charged Al-like ions are the potential candidates for the next-generation atomic optical clocks, and their atomic parameters are also useful in plasma and nuclear physics. In the present work, the hyperfine interaction constants and Landé gfactors of 3s 23p 2P 1/2, 3/2states in the ground configuration for Al-like ions in a range between Si +and Kr 23+ions are calculated by using the multi-configuration Dirac-Hartree-Fock method. Owing to the fact that hyperfine interaction constant is sensitive to electron correlation effects, we systematically investigate its influence on the hyperfine interaction constants, particularly for the high-order correlation related to the 2p electrons. According to this investigation and by taking into account the Breit interaction and QED corrections, we achieve the computational accuracy at a level of 1% and 10 –5for the hyperfine interaction constants and Landé gfactors, respectively, except for the Si +ion. Furthermore, the electronic parts of hyperfine interaction constants and gfactors are fitted with functions of atomic number. The deviations between these fitted formulas and the ab initiocalculations are less than 2% and 10 –5for the hyperfine interaction constants and the g factors, respectively. As a result, the hyperfine interaction constants and gfactors of all isotopes can be determined for Al-like ions with 14 ≤ Z≤ 54.-
Keywords:
- hyperfine structure constant/
- Landégfactor/
- multi-configuration Dirac-Hartree-Fock method/
- electron correlation effect/
- Al-like ions
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] -
Model AO VO NCSF ΔE Si+ Co14+ DHF — — 2 305 23957 VV + CV 1 {3s, 3p} {4s, 4p, 3d, 4f, 5g} 204 293 23471 2 {2s, 2p, 3s, 3p} {5s, 5p, 4d, 5f, 6g} 8577 305 23588 3 {1s, 2s, 2p, 3s, 3p} {6s, 6p, 5d, 6f, 6g} 20491 304 23598 4 {1s, 2s, 2p, 3s, 3p} {7s, 7p, 6d, 7f, 6g} 33508 304 23605 5 {1s, 2s, 2p, 3s, 3p} {8s, 8p, 7d, 7f, 6g} 44508 305 23609 6 {1s, 2s, 2p, 3s, 3p} {9s, 9p, 8d, 7f, 6g} 57218 305 23610 7 {1s, 2s, 2p, 3s, 3p} {10s, 10p, 9d, 7f, 6g} 71638 305 23611 8 {1s, 2s, 2p, 3s, 3p} {11s, 11p, 10d, 7f, 6g} 87768 305 23611 9 {1s, 2s, 2p, 3s, 3p} {12s, 12p, 11d, 7f, 6g} 105608 305 23611 10 {1s, 2s, 2p, 3s, 3p} {13s, 13p, 12d, 7f, 6g} 125158 305 23611 Model Si+ Co14+ Ael Bel g Ael Bel g 2P1/2 2P3/2 2P3/2 2P1/2 2P3/2 2P1/2 2P3/2 2P3/2 2P1/2 2P3/2 DHF 682.2 134.4 248.7 0.6658188 1.3340409 28653 5391 10060 0.6645201 1.3329968 VV + CV 1 647.7 154.5 237.1 0.6658181 1.3340408 27658 5879 9804 0.6645062 1.3330011 2 741.9 175.0 289.1 0.6658123 1.3340361 28843 6071 10282 0.6644682 1.3329818 3 783.5 172.2 296.2 0.6658100 1.3340348 29191 5814 10276 0.6644659 1.3329820 4 799.1 160.4 298.3 0.6658098 1.3340346 29287 5766 10290 0.6644616 1.3329826 5 799.8 163.2 299.2 0.6658099 1.3340344 29307 5799 10273 0.6644639 1.3329808 6 800.9 163.4 297.3 0.6658093 1.3340345 29319 5788 10255 0.6644639 1.3329812 7 801.1 163.9 297.7 0.6658094 1.3340345 29321 5797 10255 0.6644622 1.3329818 8 802.7 163.7 295.6 0.6658094 1.3340343 29326 5796 10239 0.6644634 1.3329815 9 802.8 164.0 295.8 0.6658092 1.3340344 29326 5799 10244 0.6644630 1.3329810 10 802.6 163.9 295.5 0.6658088 1.3340346 29321 5796 10245 0.6644622 1.3329812 Model Si+ Co14+ ΔE Ael Bel g ΔE Ael Bel g 2P1/2→2P3/2 2P1/2 2P3/2 2P3/2 2P1/2 2P3/2 2P1/2→2P3/2 2P1/2 2P3/2 2P3/2 2P1/2 2P3/2 DHF 305 682 134 249 0.665819 1.334041 23957 28653 5391 10060 0.664520 1.332997 VV+CV-10 305 803 164 295 0.665809 1.334035 23611 29321 5796 10245 0.664462 1.332981 +MR1 305 803 164 296 0.665809 1.334035 23611 29319 5797 10245 0.664462 1.332981 +CC2p 310 785 150 288 0.665811 1.334036 23656 29287 5757 10232 0.664465 1.332983 +TQ2p 307 785 160 292 0.665810 1.334036 23618 29245 5784 10229 0.664464 1.332983 +BQ 291 785 160 292 0.665810 1.334036 23044 29230 5788 10211 0.664464 1.332983 CCSD[9] — — — — — — 22932(13) — — — — — NIST[24] 287 — — — — — 22979 — — — — — Ions Ael Bel g 2P1/2 2P3/2 2P3/2 2P1/2 2P3/2 Si+ 785(8) 160(8) 292(3) 0.66581 1.33404 P2+ 1387(14) 290(3) 512(5) 0.66576 1.33399 S3+ 2172(22) 457(5) 797(8) 0.66570 1.33394 Cl4+ 3160(32) 664(7) 1152(12) 0.66562 1.33389 Ar5+ 4372(44) 914(9) 1585(16) 0.66555 1.33383 K6+ 5828(58) 1212(12) 2104(21) 0.66546 1.33376 Ca7+ 7553(76) 1561(16) 2714(27) 0.66536 1.33368 Sc8+ 9569(96) 1965(20) 3425(34) 0.66526 1.33360 Ti9+ 11902(119) 2430(24) 4243(42) 0.66515 1.33352 V10+ 14576(146) 2957(30) 5175(52) 0.66503 1.33342 Cr11+ 17618(176) 3553(36) 6230(62) 0.66490 1.33332 Mn12+ 21055(211) 4220(42) 7416(74) 0.66476 1.33322 Fe13+ 24916(249) 4964(50) 8740(87) 0.66462 1.33310 Co14+ 29230(292) 5788(58) 10211(102) 0.66446 1.33298 Ni15+ 34028(340) 6696(67) 11836(118) 0.66430 1.33286 Cu16+ 39344(393) 7693(77) 13625(136) 0.66413 1.33273 Zn17+ 45209(452) 8783(88) 15587(156) 0.66395 1.33259 Ga18+ 51659(517) 9970(100) 17729(177) 0.66377 1.33244 Ge19+ 58734(587) 11259(113) 20059(201) 0.66357 1.33229 As20+ 66469(665) 12654(127) 22588(226) 0.66337 1.33214 Se21+ 74908(749) 14160(142) 25326(253) 0.66316 1.33197 Br22+ 84092(841) 15779(158) 28281(283) 0.66294 1.33180 Kr23+ 94066(941) 17519(175) 31462(315) 0.66271 1.33162 Ion I μ Q A B g 2P1/2 2P3/2 2P3/2 2P1/2 2P3/2 51V10+ 7/2 5.1464 –52 21433(214) 4349(43) –269(3) 0.66503 1.33342 21456(146)* 4342(68)* –222(6)* 0.665196* 1.333460* 53Cr11+ 3/2 –0.4743 –150 –5571(56) –1123(11) –935(9) 0.66490 1.33332 –5578(30)* –1122(14)* –964(10)* 0.665081* 1.333363* 55Mn12+ 5/2 3.4669 330 29198(292) 5853(59) 2447(24) 0.66476 1.33322 29096(3)* 5821(35)* 3162(20)* 0.664957* 1.333258* 57Fe13+ 1/2 0.09064 160 4517(45) 900(9) 1398(14) 0.66462 1.33310 4509(39)* 897(2)* 961(10)* 0.664825* 1.333148* 59Co14+ 7/2 4.615 420 38542(39) 7632(76) 4289(43) 0.66446 1.33298 5245(42)* 1037(47)* 3603(40)* 0.664684* 1.333032* 61Ni15+ 3/2 –0.7497 162 –17006(170) –3348(33) 1917(19) 0.66430 1.33286 –17016(66)* –3345(27)* 1918(20)* 0.664536* 1.332909* 63Cu16+ 3/2 2.2259 –220 58383(584) 11416(114) –2998(30) 0.66413 1.33273 58412(254)* 11416(511)* –3012(60)* 0.664379* 1.332779* -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26]
计量
- 文章访问数:2342
- PDF下载量:130
- 被引次数:0