搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

王焕文, 付博, 沈顺清

Recent progress of transport theory in Dirac quantum materials

Wang Huan-Wen, Fu Bo, Shen Shun-Qing
PDF
HTML
导出引用
  • 狄拉克量子材料具有独特的电子结构, 可以用无质量和有质量的狄拉克方程描述. 从奇异的量子流体到晶体材料的多种系统均已发现了狄拉克量子材料. 由于其拓扑非平庸的能带结构, 狄拉克量子材料表现出丰富有趣的输运现象, 包括纵向负磁阻、量子干涉效应和螺旋磁效应等. 本文介绍狄拉克量子材料输运理论最新进展, 总结了基于狄拉克方程的相关量子输运理论和量子反常效应, 重点关注有质量的狄拉克费米子和量子反常半金属, 介绍了半磁拓扑绝缘体中宇称反常和半整数量子霍尔效应的实现.
    Dirac quantum materials comprise a broad category of condensed matter systems characterized by low-energy excitations described by the Dirac equation. These excitations, which can manifest as either collective states or band structure effects, have been identified in a wide range of systems, from exotic quantum fluids to crystalline materials. Over the past several decades, they have sparked extensive experimental and theoretical investigations in various materials, such as topological insulators and topological semimetals. The study of Dirac quantum materials has also opened up new possibilities for topological quantum computing, giving rise to a burgeoning field of physics and offering a novel platform for realizing rich topological phases, including various quantum Hall effects and topological superconducting phases. Furthermore, the topologically non-trivial band structures of Dirac quantum materials give rise to plentiful intriguing transport phenomena, including longitudinal negative magnetoresistance, quantum interference effects, helical magnetic effects, and others. Currently, numerous transport phenomena in Dirac quantum materials remain poorly understood from a theoretical standpoint, such as linear magnetoresistance in weak fields, anomalous Hall effects in nonmagnetic materials, and three-dimensional quantum Hall effects. Studying these transport properties will not only deepen our understanding of Dirac quantum materials, but also provide important insights for their potential applications in spintronics and quantum computing. In this paper, quantum transport theory and quantum anomaly effects related to the Dirac equation are summarized, with emphasis on massive Dirac fermions and quantum anomalous semimetals. Additionally, the realization of parity anomaly and half-quantized quantum Hall effects in semi-magnetic topological insulators are also put forward. Finally, the key scientific issues of interest in the field of quantum transport theory are reviewed and discussed.
        通信作者:王焕文,wanghw@uestc.edu.cn; 付博,fubo@gbu.edu.cn; 沈顺清,sshen@hku.hk
      • 基金项目:国家重点研发计划(批准号: 2019YFA0308603)、香港特别行政区研究拨款委员会(批准号: C7012-21G, 17301220)、电子科技大学科研启动基金(批准号: Y030232059002011)和博士后国际交流计划(批准号: YJ20220059)资助的课题.
        Corresponding author:Wang Huan-Wen,wanghw@uestc.edu.cn; Fu Bo,fubo@gbu.edu.cn; Shen Shun-Qing,sshen@hku.hk
      • Funds:Project supported by the National Key R&D Program of China (Grant No. 2019YFA0308603), the Research Grants Council of the Hong Kong Government, University Grants Committee, China (Grant Nos. C7012-21G, 17301220), the Scientific Research Starting Foundation of University of Electronic Science and Technology of China (Grant No. Y030232059002011), and the International Postdoctoral Exchange Fellowship Program, China (Grant No. YJ20220059)
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

      [157]

      [158]

      [159]

      [160]

      [161]

      [162]

      [163]

      [164]

      [165]

      [166]

      [167]

      [168]

      [169]

      [170]

      [171]

      [172]

      [173]

      [174]

      [175]

      [176]

      [177]

      [178]

      [179]

      [180]

      [181]

      [182]

      [183]

      [184]

      [185]

      [186]

      [187]

      [188]

      [189]

      [190]

      [191]

      [192]

      [193]

      [194]

      [195]

      [196]

      [197]

      [198]

      [199]

      [200]

      [201]

      [202]

      [203]

      [204]

      [205]

      [206]

      [207]

      [208]

      [209]

      [210]

      [211]

      [212]

      [213]

      [214]

      [215]

      [216]

      [217]

      [218]

    • Bilinear
      ($\hat{\cal{S} }_{\mathtt{A} }\propto\bar{\varPsi}{\boldsymbol{\gamma}}^{\mathtt{A} }\varPsi$)
      Physical quantity ${\cal{T}}$ ${\cal{I}}$ ${\cal{C}}$ Disorder
      $\bar{\varPsi}{\boldsymbol{\gamma}}^{0}\varPsi$ Total charge $(J^{0})$ $\checkmark$ $\checkmark$ $\checkmark$ $\varDelta$
      $\bar{\varPsi}{\boldsymbol{\gamma}}^{0}{\boldsymbol{\gamma}}^{5}\varPsi$ Axial charge $(J^{a0})$ $\checkmark$ $\times$ $\checkmark$ $\varDelta_{{\rm{a}}}$
      $\bar{\varPsi}\varPsi$ Scalar mass $({n}_{\beta})$ $\checkmark$ $\checkmark$ $\times$ $\varDelta_{{\rm{m}}}$
      $\bar{\varPsi}{\rm{i}}{\boldsymbol{\gamma}}^{5}\varPsi$ Pseudo-scalar density $({n}_{{\rm{P}}})$ $\times$ $\times$ $\times$ $\varDelta_{{\rm{P}}}$
      $\bar{\varPsi}{\boldsymbol{\gamma}}^{i}\varPsi$ Current $(J^{i})$ $\times$ $\times$ $\checkmark$ $\varDelta_{{\rm{c}}}$
      $\bar{\varPsi}\gamma^{i}\gamma^{5}\varPsi$ Axial current $(J^{ai})$ $\times$ $\checkmark$ $\checkmark$ $\varDelta_{{\rm{ac}}}$
      $\bar{\varPsi}{\rm{i}}{\boldsymbol{\gamma}}^{0}{\boldsymbol{\gamma}}^{i}\varPsi$ Electric
      polarization $({p}_{i})$
      $\checkmark$ $\times$ $\times$ $\varDelta_{{\rm{p}}}$
      $\bar{\varPsi }{\boldsymbol{\gamma}}^{5}{\boldsymbol{\gamma} }^{0}{\boldsymbol{\gamma} }^{i}\varPsi$ Magnetization $({m}_{i})$ $\times$ $\checkmark$ $\times$ $\varDelta_{{\rm{M}}}$
      下载: 导出CSV

      i Cooperon in $|s, s_z\rangle$ $w_i$ $\ell_{\rm{e}}^2/\ell_i^2$
      s $|0, 0\rangle$ $-\dfrac{(1-\eta^{2})^{2}}{2(1+3\eta^{2})^{2}}$ $\dfrac{(1-\eta^{2})\eta^{2}}{(1+\eta^{2})^{2}}$
      $t_{+}$ $|1, 1\rangle$ $\dfrac{4\eta^{2}(1+\eta^{2})}{(1+3\eta^{2})^{2}}$ $\dfrac{4(1-\eta)^{2}\eta^{2}}{(1+3\eta^{2})(1+\eta)^{2}}$
      $t_{0}$ $|1, 0\rangle$ 0 $\infty$
      $t_{-}$ $|1, -1\rangle$ $\dfrac{4\eta^{2}(1+\eta^{2})}{(1+3\eta^{2})^{2}}$ $\dfrac{4(1+\eta)^{2}\eta^{2}}{(1+3\eta^{2})(1-\eta)^{2}}$
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

      [157]

      [158]

      [159]

      [160]

      [161]

      [162]

      [163]

      [164]

      [165]

      [166]

      [167]

      [168]

      [169]

      [170]

      [171]

      [172]

      [173]

      [174]

      [175]

      [176]

      [177]

      [178]

      [179]

      [180]

      [181]

      [182]

      [183]

      [184]

      [185]

      [186]

      [187]

      [188]

      [189]

      [190]

      [191]

      [192]

      [193]

      [194]

      [195]

      [196]

      [197]

      [198]

      [199]

      [200]

      [201]

      [202]

      [203]

      [204]

      [205]

      [206]

      [207]

      [208]

      [209]

      [210]

      [211]

      [212]

      [213]

      [214]

      [215]

      [216]

      [217]

      [218]

    • [1] 纪雨萱, 张明楷, 李妍.二维光子晶体中的双波段半狄拉克锥与零折射率材料. 必威体育下载 , 2024, 0(0): .doi:10.7498/aps.73.20240800
      [2] 张明媚, 郭亚涛, 付旭日, 李梦蕾, 任宝藏, 郑军, 袁瑞玚.铁磁电极单层二硫化钼纳米带量子结构中的自旋开关效应和巨磁阻. 必威体育下载 , 2023, 72(15): 157202.doi:10.7498/aps.72.20230483
      [3] 胡聚罡, 贾振宇, 李绍春.碳化硅衬底上外延双层石墨烯的电输运性质. 必威体育下载 , 2022, 71(12): 127204.doi:10.7498/aps.71.20220062
      [4] 张蔚曦, 李勇, 田昌海, 佘彦超.具有大磁晶各向异性能的单层BaPb的室温量子反常霍尔效应. 必威体育下载 , 2021, 70(15): 157502.doi:10.7498/aps.70.20210014
      [5] 朱燕清, 张丹伟, 朱诗亮.用光晶格模拟狄拉克、外尔和麦克斯韦方程. 必威体育下载 , 2019, 68(4): 046701.doi:10.7498/aps.68.20181929
      [6] 刘洁, 王禄, 孙令, 王文奇, 吴海燕, 江洋, 马紫光, 王文新, 贾海强, 陈弘.基于p-n结中反常光电转换现象的新型带间跃迁量子阱红外探测器. 必威体育下载 , 2018, 67(12): 128101.doi:10.7498/aps.67.20180588
      [7] 刘松, 罗春荣, 翟世龙, 陈怀军, 赵晓鹏.负质量密度声学超材料的反常多普勒效应. 必威体育下载 , 2017, 66(2): 024301.doi:10.7498/aps.66.024301
      [8] 王晓, 陈立潮, 刘艳红, 石云龙, 孙勇.纵模对光子晶体中类狄拉克点传输特性的影响. 必威体育下载 , 2015, 64(17): 174206.doi:10.7498/aps.64.174206
      [9] 黄学勤, 陈子亭.k=0处的类狄拉克锥. 必威体育下载 , 2015, 64(18): 184208.doi:10.7498/aps.64.184208
      [10] 曹惠娴, 梅军.声子晶体中的半狄拉克点研究. 必威体育下载 , 2015, 64(19): 194301.doi:10.7498/aps.64.194301
      [11] 康永强, 高鹏, 刘红梅, 张淳民, 石云龙.单负材料组成一维光子晶体双量子阱结构的共振模. 必威体育下载 , 2015, 64(6): 064207.doi:10.7498/aps.64.064207
      [12] 史旺林, 刘兴业, 刘振兴.Vaidya-Bonner-de Sitter黑洞对狄拉克粒子的热辐射. 必威体育下载 , 2004, 53(7): 2396-2400.doi:10.7498/aps.53.2396
      [13] 徐晓华, 姜浩, 傅荣堂, 孙鑫.耦合量子点的反常极化. 必威体育下载 , 2000, 49(3): 426-429.doi:10.7498/aps.49.426
      [14] 曹江陵, 彭方志.Einstein-Maxwell-Dilaton黑膜的狄拉克粒子辐射. 必威体育下载 , 1998, 47(2): 177-182.doi:10.7498/aps.47.177
      [15] 董正超.磁三明治结构巨磁阻的量子解析理论. 必威体育下载 , 1997, 46(9): 1801-1807.doi:10.7498/aps.46.1801
      [16] 易林, 姚凯伦.自旋玻璃系统的量子输运方程. 必威体育下载 , 1994, 43(6): 1024-1028.doi:10.7498/aps.43.1024
      [17] 谭维翰, 李宇舫, 张卫平.具有零或负扩散系数的Fokker-Planck方程的形式解及其在量子光学中的应用. 必威体育下载 , 1988, 37(3): 396-407.doi:10.7498/aps.37.396
      [18] 江启杜, 刘福绥.较高杂质浓度磁性合金负磁阻的关联对模型. 必威体育下载 , 1986, 35(2): 177-187.doi:10.7498/aps.35.177
      [19] 吴杭生, 顾一鸣.急冷Al-Si合金负磁阻效应的一个可能解释. 必威体育下载 , 1982, 31(8): 1126-1129.doi:10.7498/aps.31.1126
      [20] 管惟炎, 陈熙琛, 王祖仑, 易孙圣.急冷Al-Si超导合金的负磁阻效应. 必威体育下载 , 1981, 30(9): 1284-1286.doi:10.7498/aps.30.1284
    计量
    • 文章访问数:4077
    • PDF下载量:339
    • 被引次数:0
    出版历程
    • 收稿日期:2023-04-27
    • 修回日期:2023-06-05
    • 上网日期:2023-07-18
    • 刊出日期:2023-09-05

      返回文章
      返回
        Baidu
        map