搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

安腾远, 丁霄

A method of generating arbitrary uniform fields based on angular spectrum domain and time inversion

An Teng-Yuan, Ding Xiao
PDF
HTML
导出引用
  • 现有均匀场往往基于阵列天线的特殊排布, 通过平顶波束赋形在角远场区域或者通过点聚焦在近场区域生成的, 生成的均匀场直接受制于阵列排布形态且无法灵活调控. 提出了一种基于角谱域和改进时间反演方法相结合的均匀场生成方法, 该方法不受阵列排布的限制, 能够以同一阵列排布形态, 在包括近场区域在内的任意位置, 生成指定大小、形状以及偏转角度的多种均匀场. 首先理论解析了本方法不受阵列排布限制的原因; 其次数值验证了固定阵列排布形态灵活生成多种均匀场的能力; 最后引入时间反演方法, 并做出反演信号幅度倒数加权的改进, 解决了上述均匀场在生成过程中由幅度衰减和相位延迟带来均匀场平坦度恶化等问题. 研究结果表明, 合成场质量与其对应角谱域包络的主瓣和副瓣信息有关, 且生成任意均匀场必须包含至少1/2的角谱域主瓣信息和1/2的副瓣信息. 本方法能够灵活调控一维和二维均匀场的位置、大小、形状以及偏转角度, 为灵活生成均匀场提供了一条新思路.
    Existing uniform fields are usually based on the special arrangement of the array antenna. The uniform fields generated by flat-top beam shaping in angular far-field area or by point focusing in near-field area are directly subject to the array configuration and cannot be flexibly controlled. This paper presents a method of generating uniform field based on the combination of angular spectral domain and improved time reversal technique. This method is not limited by the array arrangement. It can generate a uniform field of specified size, shape and deflection angle in the same array arrangement at any position, including the near-field region. In this work, the reason why this method is not limited by array arrangement is explained theoretically. Secondly, the ability of the fixed array configuration to generate multiple uniform fields is validated numerically. Finally, the time-reversal technique of reversal signal amplitude reciprocal weighting is introduced. The problem of deterioration of uniform field flatness, caused by amplitude decay and phase delay during the generation of uniform field, is solved through this technology. The results show that the quality of the synthesized field is related to the main lobe and sidelobe information of its corresponding angular spectrum domain envelope, and the generated any uniform field must contain at least half of the angular spectrum domain main lobe information and half of the sidelobe information. This method can flexibly control the position, size, shape and deflection angle of one-dimensional and two-dimensional uniform field, which provides a new way to flexibly generating uniform fields.
        通信作者:丁霄,xding@uestc.edu.cn
      • 基金项目:国家自然科学基金(批准号: 62171093)资助的课题.
        Corresponding author:Ding Xiao,xding@uestc.edu.cn
      • Funds:Project supported by the National Natural Science Foundation of China (Grant No. 62171093).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

    • 目标场 空域表达式 角谱域表达式 θn
      1 $ E(x, 15\lambda ) = \left\{ {\begin{aligned} &{1, \;\;|x| \leqslant 1.5\lambda } \\ &{0, \;\;{\text{others}}}\end{aligned}} \right. $ $\widetilde{E} ({k_x}) = 2\dfrac{{\sin (3{k_x}\lambda /2)}}{{{k_x}}}$ ${\theta _n} = {\rm{arccos}}\left( {\dfrac{{(n - 16)\lambda /2}}{{\sqrt {{{\left[ {(n - 16)\lambda /2} \right]}^2} + {{\left( {15\lambda } \right)}^2}} }}} \right)$
      2 $E(x, 10\lambda ) = \left\{ {\begin{aligned} &{1, \;\;{{ - 3}}\lambda < x < \lambda } \\ &{0, \;\;{\text{others}}}\end{aligned}} \right.$ $\widetilde{E} ({k_x}) = 2\dfrac{{\sin (2{k_x}\lambda /2)}}{{{k_x}}}$ $ {\theta _n} = {\rm{arccos}}\left( {\dfrac{{(n - 16)\lambda /2 + 2\lambda }}{{\sqrt {{{\left[ {(n - 16)\lambda /2 + 2\lambda } \right]}^2} + {{\left( {10\lambda } \right)}^2}} }}} \right) $
      3 $ E(x, 10\lambda ) = \left\{ {\begin{aligned} &1 , \;\;{ - 3\lambda \leqslant x \leqslant - \lambda }\\ &{1, }\;\;{\lambda \leqslant x \leqslant 3\lambda {\text{ }}} \\ &{0, }\;\;{{\text{others }}}\end{aligned}} \right. $ $\widetilde{E} ({k_x}) = 2\dfrac{{\sin (3{k_x}\lambda /2) - \sin ({k_x}\lambda /2)}}{{{k_x}}}$ ${\theta _n} = {\rm{arccos}}\left( {\dfrac{{(n - 16)\lambda /2}}{{\sqrt {{{\left[ {(n - 16)\lambda /2} \right]}^2} + {{\left( {10\lambda } \right)}^2}} }}} \right)$
      4 $ E(x, y) = \left\{ {\begin{aligned} &{1,\;\; y = x + 13\lambda , {\text{ }}} \\ & ~~~- 3 - \dfrac{{\sqrt 2 }}{2} < \dfrac{x}{\lambda} < - 3 + \dfrac{{\sqrt 2 }}{2};\\ &0, \;\;{\text{others}} \end{aligned}} \right. $ $\widetilde{E} ({k_x}) = 2\dfrac{{\sin (2{k_x}\lambda /2)}}{{{k_x}}}$ ${\theta _n} = {\rm{arccos}}\left( {\dfrac{{(n - 16)\lambda /2 + 3\lambda }}{{\sqrt {{{\left[ {(n - 16)\lambda /2 + 3\lambda } \right]}^2} + {{\left( {10\lambda } \right)}^2}} }}} \right) + \dfrac{{\text{π }}}{4}$
      5 $ E(x, y) = \left\{ {\begin{aligned}& 1, \;\; y = x + 17.5\lambda ,\\ & ~~~- 8.5\lambda < x < - 6.5\lambda; \\ &0,\;\; {\text{others}} \end{aligned}} \right. $ $\widetilde{E} ({k_x}) = 2\dfrac{{\sin (2\sqrt 2 {k_x}\lambda /2)}}{{{k_x}}}$ ${\theta _n} = {\rm{arccos}}\left( {\dfrac{{(n - 16)\lambda /2 + 7.5\lambda }}{{\sqrt {{{\left[ {(n - 16)\lambda /2 + 7.5\lambda } \right]}^2} + {{\left( {10\lambda } \right)}^2}} }}} \right) + \dfrac{{\text{π }}}{4}$
      下载: 导出CSV

      目标场 空域表达式 角谱域表达式
      1 $ E(x, y, 10\lambda ) = \left\{ \begin{aligned} &{1, }\;\;{\left| x \right| \leqslant \lambda , \left| y \right| \leqslant \lambda } \\ & {0, }\;\;{{\text{others }}} \end{aligned} \right. $ $\widetilde E ({k_x}, {k_y}) = 4\dfrac{{\sin (2{k_x}\lambda /2)}}{{{k_x}}} \cdot \dfrac{{\sin (2{k_y}\lambda /2)}}{{{k_y}}}$
      2 $ E(x, y, 10\lambda ) = \left\{ {\begin{aligned} &{1, }\;\;{\begin{aligned} &{2\lambda \leqslant x \leqslant 4\lambda {\text{ }}} \\ &{ - 0.5\lambda \leqslant y \leqslant 2.5\lambda } \end{aligned}} \\ & {0, }\;\;{{\text{others }}} \end{aligned}} \right. $ $\widetilde E ({k_x}, {k_y}) = 4\dfrac{{\sin (2{k_x}\lambda /2)}}{{{k_x}}} \cdot \dfrac{{\sin (3{k_y}\lambda /2)}}{{{k_y}}}$
      3 $ E(x, y, z) = \left\{ \begin{aligned} &{1, }\;\;{\begin{aligned} &{\sqrt 3 z = - x + 28\lambda } \\ &{6\lambda \leqslant x \leqslant 8\lambda } \\ & { - \lambda \leqslant y \leqslant \lambda {\text{ }}} \end{aligned}} \\ & {0, }\;\;{{\text{others }}} \end{aligned} \right.$ $\widetilde E ({k_x}, {k_y}) = 4\dfrac{{\sin (2{k_x}\lambda /2)}}{{{k_x}}} \cdot \dfrac{{\sin (2{k_y}\lambda /2)}}{{{k_y}}}$
      下载: 导出CSV

      目标场 θn φn
      1 $ {\rm{ arcsin}}\left( {\dfrac{{\sqrt {{{[({n_x} - 11)\lambda /2]}^2} + {{[({n_y} - 11)\lambda /2]}^2}} }}{{\sqrt {{{[({n_x} - 11)\lambda /2]}^2} + {{[({n_y} - 11)\lambda /2]}^2} + {{\left( {10\lambda } \right)}^2}} }}} \right) $ ${\rm{ arctan}}\left( {\dfrac{{({n_x} - 6)\lambda /2}}{{({n_y} - 6)\lambda /2}}} \right)$
      2 $ {\rm{ arcsin}}\left( {\dfrac{{\sqrt {{{\left[ {({n_x} - 6)\lambda /2 - 3\lambda } \right]}^2} + {{\left[ {({n_y} - 6)\lambda /2 - \lambda } \right]}^2}} }}{{\sqrt {{{\left[ {({n_x} - 6)\lambda /2 - 3\lambda } \right]}^2} + {{\left[ {({n_y} - 6)\lambda /2 - \lambda } \right]}^2} + {{\left( {10\lambda } \right)}^2}} }}} \right) $ $ {\rm{ arctan}}\left( {\dfrac{{({n_x} - 11)\lambda /2 - 3\lambda }}{{({n_y} - 11)\lambda /2 - \lambda }}} \right) $
      3 ${\rm{ arcsin}}\left( {\dfrac{{\sqrt {{\text{d}}{x_n^2} + {{\left[ {({n_y} - 11)\lambda /2} \right]}^2}} }}{{\sqrt {{\text{d}}{x_n^2} + {{\left[ {({n_y} - 11)\lambda /2} \right]}^2} + {\text{d}}{z_n^2}} }}} \right) ^*$ ${\rm{ arctan}}\left( {\dfrac{{{\text{d}}{x_n}}}{{({n_y} - 11)\lambda /2}}} \right) ^*$
      注: *其中 $ {\text{d}}{x_n} = \dfrac{{{{\left[ {\dfrac{{\left( {{n_x} - 11} \right)\lambda /2}}{{\cos ({\text{π }}/6)}}} \right]}^2} + \bigg\{ {{\left( {7\sqrt 3 \lambda } \right)}^2} + {{\left[ {\left( {{n_x} - 11} \right)\lambda /2} \right]}^2} \bigg\} - \left[ {7\sqrt 3 \lambda + \left( {{n_x} - 11} \right)\lambda /2\tan ({\text{π }}/6)} \right]}}{{\dfrac{{\left( {{n_x} - 11} \right)\lambda }}{{\cos ({\text{π }}/6)}}}} $,
      ${\text{d}}{z_n} = \sqrt {{{\left( {7\sqrt 3 \lambda } \right)}^2} + {{\left[ {\left( {{n_x} - 11} \right)\lambda /2} \right]}^2} - {\text{d}}{x_n^2}} $.
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

    • [1] 闫轶著, 丁帅, 韩旭, 王秉中.基于信道处理的时间反演幅度可调控多目标聚焦方法. 必威体育下载 , 2023, 72(16): 164101.doi:10.7498/aps.72.20230547
      [2] 安腾远, 丁霄, 王秉中.基于时间反演技术的复杂天线罩辐射波束畸变纠正. 必威体育下载 , 2023, 72(3): 030401.doi:10.7498/aps.72.20221767
      [3] 陈传升, 王秉中, 王任.基于时间反演技术的电磁器件端口场与内部场转换方法. 必威体育下载 , 2021, 70(7): 070201.doi:10.7498/aps.70.20201682
      [4] 张文杰, 刘郁松, 郭浩, 韩星程, 蔡安江, 李圣昆, 赵鹏飞, 刘俊.双螺线圈射频共振结构增强硅空位自旋传感灵敏度方法. 必威体育下载 , 2020, 69(23): 234206.doi:10.7498/aps.69.20200765
      [5] 韩志斌, 彭朝晖, 刘雄厚.深海海底反射区声场角谱域分布结构分析及在声纳波束俯仰上的应用研究. 必威体育下载 , 2020, (): 004300.doi:10.7498/aps.69.20191652
      [6] 韩志斌, 彭朝晖, 刘雄厚.深海海底反射区声场角谱域分布结构分析及在声纳波束俯仰上的应用. 必威体育下载 , 2020, 69(11): 114301.doi:10.7498/aps.69.20201652
      [7] 院琳, 杨雪松, 王秉中.基于经验知识遗传算法优化的神经网络模型实现时间反演信道预测. 必威体育下载 , 2019, 68(17): 170503.doi:10.7498/aps.68.20190327
      [8] 朱江, 王雁, 杨甜.无线多径信道中基于时间反演的物理层安全传输机制. 必威体育下载 , 2018, 67(5): 050201.doi:10.7498/aps.67.20172134
      [9] 张洪波, 张希仁.用于实现散射介质中时间反演的数字相位共轭的相干性. 必威体育下载 , 2018, 67(5): 054201.doi:10.7498/aps.67.20172308
      [10] 龚志双, 王秉中, 王任, 臧锐, 王晓华.基于光栅结构的远场时间反演亚波长源成像. 必威体育下载 , 2017, 66(4): 044101.doi:10.7498/aps.66.044101
      [11] 臧锐, 王秉中, 丁帅, 龚志双.基于反演场扩散消除的时间反演多目标成像技术. 必威体育下载 , 2016, 65(20): 204102.doi:10.7498/aps.65.204102
      [12] 陈秋菊, 姜秋喜, 曾芳玲, 宋长宝.基于时间反演电磁波的稀疏阵列单频信号空间功率合成. 必威体育下载 , 2015, 64(20): 204101.doi:10.7498/aps.64.204101
      [13] 冯菊, 廖成, 张青洪, 盛楠, 周海京.蒸发波导中的时间反演抛物方程定位法. 必威体育下载 , 2014, 63(13): 134101.doi:10.7498/aps.63.134101
      [14] 周洪澄, 王秉中, 丁帅, 欧海燕.时间反演电磁波在金属丝阵列媒质中的超分辨率聚焦. 必威体育下载 , 2013, 62(11): 114101.doi:10.7498/aps.62.114101
      [15] 梁木生, 王秉中, 章志敏, 丁帅, 臧锐.基于远场时间反演的亚波长天线阵列研究. 必威体育下载 , 2013, 62(5): 058401.doi:10.7498/aps.62.058401
      [16] 赵德双, 岳文君, 余敏, 张升学.时间反演脉冲电磁波在双负材料中传播特性研究. 必威体育下载 , 2012, 61(7): 074102.doi:10.7498/aps.61.074102
      [17] 陈英明, 王秉中, 葛广顶.微波时间反演系统的空间超分辨率机理. 必威体育下载 , 2012, 61(2): 024101.doi:10.7498/aps.61.024101
      [18] 章志敏, 王秉中, 葛广顶, 梁木生, 丁帅.亚波长金属线阵中一维时间反演电磁波的聚焦机理研究. 必威体育下载 , 2012, 61(9): 098401.doi:10.7498/aps.61.098401
      [19] 章志敏, 王秉中, 葛广顶.一种用于时间反演通信的亚波长天线阵列设计. 必威体育下载 , 2012, 61(5): 058402.doi:10.7498/aps.61.058402
      [20] 丁帅, 王秉中, 葛广顶, 王多, 赵德双.基于时间透镜原理实现微波信号时间反演. 必威体育下载 , 2012, 61(6): 064101.doi:10.7498/aps.61.064101
    计量
    • 文章访问数:3132
    • PDF下载量:80
    • 被引次数:0
    出版历程
    • 收稿日期:2023-03-20
    • 修回日期:2023-06-05
    • 上网日期:2023-07-13
    • 刊出日期:2023-09-20

      返回文章
      返回
        Baidu
        map