-
计算成像为光学成像系统提供了更强大的信息获取能力, 通过在成像链路中引入编解码过程, 在增大信息量的同时降低系统的复杂度, 为实现更简单和更智能的成像系统奠定了基础. 本文总结了以计算成像为基础的简单光学成像技术的发展. 简单光学以小型化和集成化的成像元件与系统为目标, 将光学系统设计与图像处理算法进行联合优化, 在小尺寸、低质量和低功耗的系统中实现与复杂光学系统相媲美的成像效果. 随着微纳加工技术的发展, 简单光学元件从单透镜或少片透镜逐渐发展到衍射光学元件、二元光学元件和超构表面等平板光学元件. 复原算法中总结了正向求解算法、基于模型的优化迭代算法和深度学习人工智能算法. 本文介绍了深度成像、高分辨与超分辨成像、大视场和大景深成像等技术, 以及简单光学在消费电子、自动驾驶、机器视觉、安防监控和元宇宙等领域发挥的作用, 并对未来的发展进行展望.Computational imaging enables optical imaging systems to acquire more information with miniaturized setups. Computational imaging can avoid the object-image conjugate limitation of the imaging system, and introduce encoding and decoding processes based on physical optics to achieve more efficient information transmission. It can simultaneously increase the amount of information and reduce the complexity of the system, thereby paving the way for miniaturizing imaging systems. Based on computational imaging, the simple and compact optical imaging techniques are developed, which is also called simple optics. To develop miniaturized optical imaging elements and integrated systems, simple optics utilizes the joint design of optical system and image processing algorithms, thereby realizing high-quality imaging that is comparable to complex optical systems. The imaging systems are of small-size, low-weight, and low-power consumption. With the development of micro-nano manufacturing, the optical elements have evolved from a single lens or a few lenses, to flat/planar optical elements, such as diffractive optical elements and metasurface optical elements. As a result, various lensless and metalens imaging systems have emerged. Owing to the introduction of encoding process and decoding process, an optical imaging model is developed to represent the relationship between the target object and the acquired signal, from which the computational reconstruction is used to restore the image. In the image restoration part, the algorithms are discussed in three categories, i.e. the classic algorithm, the model-based optimization iterative algorithm, and the deep learning (neural network) algorithm. Besides, the end-to-end optimization is highlighted because it introduces a new frame to minimize the complexity of optical system. In this review, the imaging techniques realized by simple optics are also discussed, such as depth imaging, high-resolution and super-resolution imaging, large field of view imaging, and extended depth of field imaging, as well as their important roles in developing consumer electronics, unmanned driving, machine vision, security monitoring, biomedical devices and metaverse. Last but not least, the challenges and future developments are prospected.
-
Keywords:
- simple optics/
- computational imaging/
- lensless/
- metalens
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] -
序号 成像元件 方法 作者 1 单透镜 估计单透镜PSF函数, 后利用非盲去卷积算法复原图像 Schuler等[30] 2 单透镜 估计单透镜PSF函数, 再基于交叉通道先验执行非盲去卷积算法复原图像 Heide等[31] 3 单透镜 使用快速可微光线追迹模型和基于Res-Unet的恢复网络实现单镜头端到端设计和高质量成像 Li等[34] 4 折衍混合透镜 由可微分光学层的深度相关PSF对全聚焦图像进行编码, 再利用基于U-Net的深度网络对编码图像进行深度图重构 Wu等[36] 5 折衍混合透镜 设计一款菲涅耳透镜, 通过混合PSF在整个视场上产生空间位移不变的点扩散函数, 建立基于变体U-Net、生成对抗网络和知觉损失的深度学习网络实现高质量图像重建 Peng等[38] 6 透镜组 利用基于噪声图像对的正态Sinh-Arcsinh模型的单镜头相机PSF估计方法, 通过非盲去卷积算法获得高质量图像 Zhan等[41] 7 透镜组 利用一个基于可微分光线追迹渲染引擎的端到端复杂透镜的设计框架对特定成像任务联合优化镜头模块和图像重建网络, 重建网络采用U-Net架构 Sun等[42] 8 透镜组 对简单光学模块引入加权斑块退化模型, 建立DMPH-SE网络实现高质量图像重建 Ji等[44] 序号 工作波长/nm 特点 作者 1 410—690 使用优化方法重新排列PSF的空间和光谱分布, 在硬件上减小色差, 使用交叉尺度先验去卷积重建图像 Peng等[80] 2 400—700 将DOE结构高度编码并使用粒子群算法进行优化, 各 波长模糊核趋于一致, 从而降低去卷积复原的难度 Zhao等[81] 3 Visible
(designed at 532)设计具有轮廓线型PSF的相位掩模, 并使用全变差正则化先验去卷积复原图像, 实现三维成像 Boominathan等[82] 4 420—720 联合优化DOE的高度和图像处理模块的参数, 使用维纳滤波复原图像 Dun等[83] 5 429—699 使用同心环分解的旋转对称衍射消色差设计, 并使用Res-Unet复原图像, 具有高保真成像性能 Dun等[84] 6 420—680 搭建可微分模拟器和神经网络重建方法进行联合优化, 能够实现高光谱深度成像 Baek等[85] 7 Visible
(designed at 550)使用多个DOE堆叠实现变焦, 使用交叉通道先验去卷积复原图像 Heide等[86] 8 875—1675 使用多级衍射透镜实现短波红外成像, 使用维纳滤波去卷积复原图像 Banerji等[87] 序号 工作波长/μm 特点 作者 1 0.98 采用单片直径为320 μm的a-Si/SiO2超构透镜, 焦距为800 μm,NA为0.42 Chen等[100] 2 0.4—0.7 采用单片直径为0.5 mm的Si3N4/SiO2超构透镜, 焦距为1 mm, FOV为40° Tseng等[101] 3 9.3—10.6 采用单片直径为12 mm的Si/蓝宝石超构透镜, 焦距为4.48 mm, FOV为178° Zhang等[102] 4 9—12 采用2×3个直径为1.7234 mm的全Si超构透镜, 焦距为1 cm, 将平均串扰降低3倍以上 Zhang等[103] 5 1.55 采用单片直径为2 cm的a-Si/SiO2超构透镜, 焦距为50 mm,NA为0.2 She等[104] 6 0.42—0.65 采用双筒直径为2.6 mm的GaN超构透镜, 焦距为10 mm, 深度测量精度可达50 μm Liu等[105] 7 0.8 采用多个直径为2 mm的a-Si/SiO2超构透镜, 焦距为30 mm, 利用合成孔径实现了与大孔径常规透镜相当的成像分辨率 Zhao等[106] 8 10.6 采用2×2个直径为5 cm的全Si超构透镜阵列, 焦距34 mm,NA为0.592 Hou等[107] 9 0.47 采用1×17个直径为0.3 mm的Si3N4/SiO2超构透镜阵列, 焦距为450 μm, FOV>120° Chen等[108] 10 0.63 采用6×6个直径为0.2 mm的a-Si/Si超构透镜阵列, 焦距为250 μm,NA为0.37 Xu等[109] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178]
计量
- 文章访问数:14569
- PDF下载量:586
- 被引次数:0