搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

袁国亮, 王琛皓, 唐文彬, 张睿, 陆旭兵

Structure, performance regulation and typical device applications of HfO2-based ferroelectric films

Yuan Guo-Liang, Wang Chen-Hao, Tang Wen-Bin, Zhang Rui, Lu Xu-Bing
PDF
HTML
导出引用
  • 大数据、物联网和人工智能的快速发展对存储芯片、逻辑芯片和其他电子元器件的性能提出了越来越高的要求. 本文介绍了HfO 2基铁电薄膜的铁电性起源, 通过掺杂元素改变晶体结构的对称性或引入适量的氧空位来降低相转变的能垒可以增强HfO 2基薄膜的铁电性, 在衬底和电极之间引入应力、减小薄膜厚度、构建纳米层结构和降低退火温度等方法也可以稳定铁电相. 与钙钛矿氧化物铁电薄膜相比, HfO 2基铁电薄膜具有与现有半导体工艺兼容性更强和在纳米级厚度下铁电性强等优点. 铁电存储器件理论上可以达到闪存的存储密度, 读写次数超过10 10次, 同时具有读写速度快、低操作电压和低功耗等优点. 此外, 还总结了HfO 2基薄膜在负电容晶体管、铁电隧道结、神经形态计算和反铁电储能等方面的主要研究成果. 最后, 讨论了HfO 2基铁电薄膜器件当前面临的挑战和未来的机遇.
    The rapid developments of big data, the internet of things, and artificial intelligence have put forward more and more requirements for memory chips, logic chips and other electronic components. This study introduces the ferroelectric origin of HfO 2-based ferroelectric film and explains how element doping, defects, stresses, surfaces and interfaces, regulate and enhance the ferroelectric polarization of the film. It is widely accepted that the ferroelectricity of HfO 2-based ferroelectric film originates from the metastable tetragonal phase. The ferroelectricity of the HfO 2-based film can be enhanced by doping some elements such as Zr, Si, Al, Gd, La, and Ta, thereby affecting the crystal structure symmetry. The introduction of an appropriate number of oxygen vacancy defects can reduce the potential barrier of phase transition between the tetragonal phase and the monoclinic phase, making the monoclinic phase easy to transition to tetragonal ferroelectric phase. The stability of the ferroelectric phase can be improved by some methods, including forming the stress between the substrate and electrode, reducing the film thickness, constructing a nanolayered structure, and reducing the annealing temperature. Compared with perovskite oxide ferroelectric thin films, HfO 2-based films have the advantages of good complementary-metal-oxide-semiconductor compatibility and strong ferroelectricity at nanometer thickness, so they are expected to be used in ferroelectric memory. The HfO 2-based 1T1C memory has the advantages of fast reading and writing speed, more than reading and writing 10 12times, and high storage density, and it is the fast reading and writing speed that the only commercial ferroelectric memory possesses at present. The 1T ferroelectric field effect transistor memory has the advantages of non-destructive reading and high storage density. Theoretically, these memories can achieve the same storage density as flash memory, more than reading 10 10times, the fast reading/writing speed, low operating voltage, and low power consumption, simultaneously. Besides, ferroelectric negative capacitance transistor can obtain a subthreshold swing lower than 60 mV/dec, which greatly reduces the power consumption of integrated circuits and provides an excellent solution for further reducing the size of transistors. Ferroelectric tunnel junction has the advantages of small size and easy integration since the tunneling current can be largely adjusted through ferroelectric polarization switching. In addition, the HfO 2-based field effect transistors can be used to simulate biological synapses for applications in neural morphology calculations. Moreover, the HfO 2-based films also have broad application prospects in antiferroelectric energy storage, capacitor dielectric energy storage, memristor, piezoelectric, and pyroelectric devices, etc. Finally, the current challenges and future opportunities of the HfO 2-based thin films and devices are analyzed.
        通信作者:袁国亮,yuanguoliang@njust.edu.cn; 陆旭兵,luxubing@m.scnu.edu.cn
      • 基金项目:国家自然科学基金(批准号: 92263105, 62174059)和中央高校基本科研业务费专项资金(批准号: 30921013108)资助的课题.
        Corresponding author:Yuan Guo-Liang,yuanguoliang@njust.edu.cn; Lu Xu-Bing,luxubing@m.scnu.edu.cn
      • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. 92263105, 62174059) and the Fundamental Research Funds for the Central Universities, China (Grant No. 30921013108).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

    • 掺杂元素 掺杂浓度 结构 沉积方法 薄膜厚度/nm 沉积温度/℃ 退火 电场/(MV·cm–1) 2Pr/(μC·m–2) 2Ec/(MV·cm–1) 极化翻转次数/cycle
      Si[37] 4.4 mol% TiN/Si:HfO2/TiN ALD 9 N/A 800 ℃, N2 4.5 48 1.74 N/A
      Zr[38] 50 at% W/Zr:HfO2/W ALD 10 250 700 ℃, N2, 5 s 3.5 65 2.4 104at3.0 MV cm–1
      Y[28] 5.2 mol% TiN/Y:HfO2/TiN ALD 10 N/A 600 ℃, N2, 20 s 4.5 48 2.4 N/A
      Gd[39] 3.4 cat% TaN/Gd:HfO2/TaN ALD 10 300 800 ℃, N2, 20 s 70 N/A 105at4.0 MV cm–1
      Al[40] 6.4 mol% W/TiN/Al:HfO2/Si ALD 10 280 700 ℃, N2, 10 s 8 100 9.5 106at8.0 MV cm–1
      La[41] 10.0 cat% TiN/La:HfO2/TiN ALD 12 280 800 ℃, N2, 20 s 4.5 55 2.8 5×105at 4 MV cm–1
      Sr[42] 9.9 mol% TiN/Sr:HfO2/TiN ALD 10 300 800 ℃, N2, 20 s 3.5 46 $ \sim $3.2 106at3.0 MV cm–1
      Ta[43] 16 at% Pt/Ta:HfO2/Pt/Ti PVD 60 500 No anneal 1.25 106 1.6 107at0.8 MV cm–1
      非掺杂[44] N/A TiN/HfO2/TiN PEALD 8 N/A 600 ℃, Ar, 30 s 3.125 26 2.4 > 108at2.5 MV cm–1
      对照[45] Pb(Zr0.53Ti0.47)O3 PLD 500 650 650 ℃, O2, 15 min N/A 151 0.14 1×1010
      对照[46] BiFeO3 CSD 525 N/A 650 ℃, N2 N/A 142 1.0 106at0.4 MV cm–1
      下载: 导出CSV

      材料 类型 厚度/nm 电场/(MV·cm–1) ESD/(J·cm–3) η/% Ref.
      Hf0.5Zr0.5O2 铁电 9.2 4.9 55 57 [22]
      Ta2O5/Hf0.5Zr0.5O2 介电/反铁电 25 7 100 >95 [148]
      Hf0.5Zr0.5O2/Hf0.25Zr0.75O2 铁电/反铁电 10 6 71.95 57.8 [149]
      Hf0.3Zr0.7O2 反铁电 9.2 4.35 45 51 [22]
      Si:Hf0.5Zr0.5O2 反铁电 10 4 53 82 [147]
      Al:Hf0.5Zr0.5O2 反铁电 10 5 52 80 [147]
      La:Hf0.5Zr0.5O2 反铁电 10 4 50 70 [53]
      Al2O3 线性 5 50 [150]
      BiFeO3 铁电 $ \sim $40 3.2 [146]
      BaTiO3 铁电 $ \sim $300 2.6 28.5 75 [145]
      Pb(Zr0.52Ti0.48)O3 铁电 350 1.13 15.6 58.8 [151]
      La:PbZrO3 反铁电 103 1 17.3 80.8 [152]
      PVDF-HFP 铁电 104 7.9 31.2 [153]
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

    • [1] 郑旭, 李钊, 顾月良, 尹帅帅, 姜继超, 郭朴, 邱志勇, 李晓龙.BaTiO3单晶表面结构及表面液体pH值的影响. 必威体育下载 , 2024, 73(10): 106101.doi:10.7498/aps.73.20240084
      [2] 丁俊, 文黎巍, 李瑞雪, 张英.铁电极化翻转对硅烯异质结中电子性质的调控. 必威体育下载 , 2022, 71(17): 177303.doi:10.7498/aps.71.20220815
      [3] 石志鑫, 周大雨, 李帅东, 徐进, UweSchröder.一阶回转曲线图谱法及其在HfO2基铁电薄膜极化翻转行为研究中的应用. 必威体育下载 , 2021, 70(12): 127702.doi:10.7498/aps.70.20210115
      [4] 陈东, 余本海.外延应变和铁电极化双重调控LaMnO3/BaTiO3超晶格的磁性. 必威体育下载 , 2020, 69(22): 226301.doi:10.7498/aps.69.20200839
      [5] 黎华梅, 侯鹏飞, 王金斌, 宋宏甲, 钟向丽.HfO2基铁电场效应晶体管读写电路的单粒子翻转效应模拟. 必威体育下载 , 2020, 69(9): 098502.doi:10.7498/aps.69.20200123
      [6] 裴明辉, 田瑜, 张金星.钙钛矿型铁电氧化物表面结构与功能的控制及其潜在应用. 必威体育下载 , 2020, 69(21): 217709.doi:10.7498/aps.69.20200884
      [7] 崔宗杨, 谢忠帅, 汪尧进, 袁国亮, 刘俊明.钙钛矿铁电半导体的光催化研究现状及其展望. 必威体育下载 , 2020, 69(12): 127706.doi:10.7498/aps.69.20200287
      [8] 王建元, 白健英, 罗炳成, 王拴虎, 金克新, 陈长乐.BaTiO3/La0.67Sr0.33MnO3-复合薄膜的磁致电极化和磁介电特性研究. 必威体育下载 , 2018, 67(1): 017701.doi:10.7498/aps.67.20172019
      [9] 李超, 姚湲, 杨阳, 沈希, 高滨, 霍宗亮, 康晋锋, 刘明, 禹日成.纳米材料及HfO2基存储器件的原位电子显微学研究. 必威体育下载 , 2018, 67(12): 126802.doi:10.7498/aps.67.20180731
      [10] 琚安安, 郭红霞, 张凤祁, 郭维新, 欧阳晓平, 魏佳男, 罗尹虹, 钟向丽, 李波, 秦丽.铁电存储器中高能质子引发的单粒子功能中断效应实验研究. 必威体育下载 , 2018, 67(23): 237803.doi:10.7498/aps.67.20181225
      [11] 秦丽, 郭红霞, 张凤祁, 盛江坤, 欧阳晓平, 钟向丽, 丁李利, 罗尹虹, 张阳, 琚安安.铁电存储器60Co γ射线及电子总剂量效应研究. 必威体育下载 , 2018, 67(16): 166101.doi:10.7498/aps.67.20180829
      [12] 吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟.铁电材料光催化活性的研究进展. 必威体育下载 , 2017, 66(16): 167702.doi:10.7498/aps.66.167702
      [13] 代月花, 潘志勇, 陈真, 王菲菲, 李宁, 金波, 李晓风.基于HfO2的阻变存储器中Ag导电细丝方向和浓度的第一性原理研究. 必威体育下载 , 2016, 65(7): 073101.doi:10.7498/aps.65.073101
      [14] 蒋然, 杜翔浩, 韩祖银, 孙维登.Ti/HfO2/Pt阻变存储单元中的氧空位聚簇分布. 必威体育下载 , 2015, 64(20): 207302.doi:10.7498/aps.64.207302
      [15] 代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦.HfO2中影响电荷俘获型存储器的氧空位特性第一性原理研究. 必威体育下载 , 2014, 63(12): 123101.doi:10.7498/aps.63.123101
      [16] 周大雨, 徐进.Si掺杂HfO2薄膜的铁电和反铁电性质. 必威体育下载 , 2014, 63(11): 117703.doi:10.7498/aps.63.117703
      [17] 张兴尧, 郭旗, 陆妩, 张孝富, 郑齐文, 崔江维, 李豫东, 周东.串口型铁电存储器总剂量辐射损伤效应和退火特性. 必威体育下载 , 2013, 62(15): 156107.doi:10.7498/aps.62.156107
      [18] 许军, 黄宇健, 丁士进, 张卫.Ta和TaN底电极对原子层淀积HfO2介质MIM电性能的影响. 必威体育下载 , 2009, 58(5): 3433-3436.doi:10.7498/aps.58.3433
      [19] 王飞鹏, 夏钟福, 邱勋林, 沈 军.聚丙烯孔洞铁电驻极体膜的电极化及其电荷动态特性. 必威体育下载 , 2006, 55(7): 3705-3710.doi:10.7498/aps.55.3705
      [20] 李智强, 陈敏, 沈文彬, 李景德.铁电极化子动力学理论. 必威体育下载 , 2001, 50(12): 2477-2481.doi:10.7498/aps.50.2477
    计量
    • 文章访问数:12148
    • PDF下载量:663
    • 被引次数:0
    出版历程
    • 收稿日期:2022-11-20
    • 修回日期:2022-12-17
    • 上网日期:2023-01-07
    • 刊出日期:2023-05-05

      返回文章
      返回
        Baidu
        map