-
极化激元是一种光与物质发生强相互作用形成的准粒子, 可以极大地压缩光波长, 提供一种突破衍射极限的光调制方式, 为纳米光子学、非线性光学、量子光学等相关学科的发展提供了重要支持. 范德瓦耳斯二维原子晶体是研究极化激元的理想平台, 通过叠层、转角可以为极化激元的调控提供额外的自由度, 从而展示出新颖的光学结构和极化激元特性. 本文以近场光学为主要研究方法, 对近几年出现的叠层及转角二维原子晶体的各种光学结构及极化激元进行综述. 综述内容包括叠层石墨烯的畴结构、转角二维原子晶体的莫尔超晶格结构、转角二维拓扑极化激元、转角石墨烯手性等离激元等. 最后, 对叠层/转角二维原子晶体及其极化激元的未来发展进行展望.
-
关键词:
- 转角二维原子晶体/
- 极化激元/
- 莫尔超晶格/
- 扫描近场光学显微技术
Polariton is a quasiparticle generated from strong interaction between a photon and an electric or magnetic dipole-carrying excitation. These polaritons can confine light into a small space that is beyond the diffraction limit of light, thus have greatly advanced the development of nano photonics, nonlinear optics, quantum optics and other related research. Van der Waals two-dimensional (2D) crystals provide an ideal platform for studying nano-polaritons due to reduced material dimensionality. In particular, stacking and twisting offer additional degree of freedom for manipulating polaritons that are not available in a single-layer material. In this paper, we review the near-field optical characterizations of various structures and polaritonic properties of stacked/twisted 2D crystals reported in recent years, including domain structures of stacked few-layer graphene, moiré superlattice structures of twisted 2D crystals, twisted topological polaritons, and twisted chiral plasmons. We also propose several exciting directions for future study of polaritons in stacked/twisted 2D crystals.-
Keywords:
- twisted two-dimensional crystals/
- polaritons/
- moiré superlattice/
- scanning near-field optical microscopy
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106]
计量
- 文章访问数:5746
- PDF下载量:413
- 被引次数:0