搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    杨章章, 刘丽, 万致涛, 付佳, 樊群超, 谢锋, 张燚, 马杰

    Combining machine learning algorithm to improve prediction performance of ab initio method for vibrational energy spectra of HF/HBr/H35Cl/Na35Cl

    Yang Zhang-Zhang, Liu Li, Wan Zhi-Tao, Fu Jia, Fan Qun-Chao, Xie Feng, Zhang Yi, Ma Jie
    PDF
    HTML
    导出引用
    • 高精度振动能谱蕴含着分子体系的大量量子特征, 是人们认识和操控分子的重要基础数据. 目前, 从头算方法在计算分子的振动能谱方面取得了大量成果, 但是仍然面临着精度和计算量上的挑战. 本文提出了一种综合从头算方法与机器学习算法进行能谱预测的新方法, 在提高振动能级精度的同时大幅降低了计算量. 针对HF、HBr、H 35Cl和Na 35Cl等卤素分子的研究结果表明, 相较于单独的CCSD(T)/cc-pV5Z计算方法, 新方法将误差减少了50%以上, 同时将计算量降低了一个数量级.
      Halides play an important role in atmospheric chemistry, corrosion of steel, and also in controlling the abundance of O 3. Moreover high-precision vibrational energy spectra contain a large amount of quantum information of molecular system and are basic data for people to understand and manipulate molecules. At present, ab-initio methods have achieved many calculation results of the potential energy surfaces and corresponding vibrational energy of molecules, but they still face challenges in terms of accuracy and computational cost. Recently, data-driven machine learning methods have demonstrated very strong capability of extracting high-dimensional functional relationships from massive data and have been widely used in spectrum studies. Therefore, a theoretical approach to combining ab-initio method and machine learning algorithm is presented here to predict the vibrational energy of diatomic systems, which improves the accuracy and simultaneously reduces the computational cost. Firstly, the vibrational energy levels of 42 diatomic molecules are obtained by using different CCSD(T) methods to calculate the configurations from simple to complex and the corresponding experimental results are also collected. A machine learning algorithm is then used to learn the difference between the CCSD(T) method calculated vibrational results and the experimental vibrational results, and a high-dimensional error function is finally constructed to improve the original CCSD(T) computational accuracy. The results for HF, HBr, H 35Cl and Na 35Cl (they did not appear in the training set) and other halogen molecules show that compared with the CCSD(T)/cc-pV5Z calculation method alone, the present method reduces the prediction error by more than 50% and the computational cost by nearly one order of magnitude. It is worth noting that the method proposed in this paper is not only limited to the energy level prediction of diatomic systems, but also applicable in other fields where data can be obtained by ab initio methods and experimental methods simultaneously, such as the energy spectrum properties of macromolecular systems.
          通信作者:付佳,fujiayouxiang@126.com; 樊群超,fanqunchao@sina.com;
        • 基金项目:国家自然科学基金(批准号: 11904295)、四川省科学技术计划(批准号: 2021ZYD0050) 和极端光学协同创新中心开放研究基金项目(批准号: KF2020003)资助的课题.
          Corresponding author:Fu Jia,fujiayouxiang@126.com; Fan Qun-Chao,fanqunchao@sina.com;
        • Funds:Project supported by the National Natural Science Foundation of China (Grant No. 11904295), the Program of Science and Technology of Sichuan Province of China (Grant No. 2021ZYD0050), and the Open Research Found Program of Collaborative Innovation Center of Extreme Optics (Grant No. KF2020003).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

        [45]

        [46]

        [47]

        [48]

        [49]

        [50]

        [51]

        [52]

        [53]

        [54]

        [55]

        [56]

        [57]

        [58]

        [59]

      • $ \nu $ H2 HF DF H35Cl LiH Li2
        0 2179.69 2050.77 1490.30 1483.88 705.08 175.032
        1 6341.75 6012.19 4396.97 4369.86 2078.45 521.26
        2 10268.40 9801.57 7212.12 7151.86 3406.08 862.26
        3 13694.54 13423.60 9937.66 9830.66 4688.81 1198.00
        4 17433.22 16882.45 12575.33 12406.71 5927.55 1528.41
        ${\text{H}}{}^{{\text{79}}}{\text{Br}}$ N2 BF ClF NO CN
        0 1314.65 1175.77 742.00 191.77 948.50 1031.20
        1 3873.57 3505.69 2208.00 573.06 2824.50 3073.60
        2 6341.99 5806.93 3651.00 951.35 4627.30 5089.70
        3 8719.91 8079.47 5072.00 1326.60 6491.90 7079.50
        4 11007.01 10323.28 6470.00 1698.90 8283.50 9042.80
        Br2 BCl CP CS SiCl O2
        0 162.38 416.83 618.19 709.00 267.25 664.69
        1 485.53 1242.63 1844.32 2117.00 798.54 2326.53
        2 806.51 2058.80 3056.76 3515.00 1325.50 3968.09
        3 1125.29 2865.49 4255.53 4902.00 1847.50 5589.60
        4 1441.88 3662.85 5440.62 6278.00 2365.50 7191.32
        12C16O 13C16O 14C16O 12C17O 13C17O 14C17O
        0 1081.77 1057.72 1036.74 1068.03 1043.66 1022.39
        1 3225.04 3153.79 3091.61 3184.32 3112.11 3049.05
        2 6341.83 5224.54 5122.15 5274.81 5155.92 5052.07
        3 7432.21 7270.04 7128.44 7339.54 7175.14 7031.50
        4 9496.24 9290.35 9110.52 9378.60 9169.83 8987.38
        SO SiC SiN 24Mg16O Na35Cl NaLi
        0 576.94 475.47 574.06 391.14 181.90 127.83
        1 1740.42 1416.67 1712.46 1165.88 543.05 381.22
        2 2916.75 2344.87 2837.85 1930.32 900.70 631.10
        3 4105.98 3260.07 3950.20 2684.16 1254.89 877.79
        4 5308.16 4162.27 5049.47 3427.11 1605.65 1121.12
        MgH AlO AlF Al Cl SiO BH
        0 739.11 488.00 394.60 246.60 619.20 1171.06
        1 2171.09 1453.40 1180.00 734.10 1848.90 3440.30
        2 3539.79 2404.76 1956.10 1217.30 3066.50 5614.11
        3 4841.14 3342.19 2722.30 1698.00 4272.30 7694.16
        4 6070.50 4265.42 3480.20 2175.20 5466.10 9684.16
        下载: 导出CSV

        输入变量$X$ 目标变量$\hat Y:{E_\nu }$ 文献[59] $E_\nu ^{{\text{this work}}}$
        $ E_\nu ^{\text{T}} $ $ E_\nu ^{\text{Q}} $
        171.702 172.1623 175.03 174.059 178.903
        511.410 513.631 521.26 518.255 531.853
        846.059 849.982 862.26 857.832 878.969
        1175.599 1181.177 1198.00 1191.397 1173.096
        1499.987 1507.169 1528.41 1519.330 1496.133
        1819.161 1827.906 1853.46 1841.991 1906.993
        2133.063 2143.328 2173.07 2159.852 2106.362
        2441.620 2453.368 2487.19 2471.991 2438.853
        2744.753 2757.954 2795.74 2778.334 2693.961
        3042.368 3057.002 3090.64 3072.703 3102.89
        3334.377 3350.421 3395.80 3373.920 3369.871
        3620.669 3638.108 3687.11 3663.159 3630.759
        3901.126 3919.951 3972.43 3946.618 4009.308
        4175.619 4195.927 4251.73 4223.997 4297.662
        4444.003 4465.597 4524.78 4495.270 4487.998
        4706.126 4729.113 4791.43 4760.610 4530.406
        4961.805 4986.210 5051.53 5018.559 4962.152
        5210.858 5236.706 5304.93 5270.268 5225.061
        5453.074 5480.402 5551.4 5514.831 5506.045
        5688.224 5717.081 6790.71 5753.539 5701.189
        5916.059 5946.503 6022.66 5983.959 6022.425
        注: 文献[59]的数据和$E_\nu ^{{\text{this work}}}$不作为输入数据.
        下载: 导出CSV

        HF$ \nu $ ${E_\nu }$ ${\delta _{{\text{this work}}}}$ $E_\nu ^{{\text{this work}}}$ $\delta _\nu ^{\text{Q}}$ $E_\nu ^{\text{Q}} $
        0 2050.771 0.04093 2134.714 0.01200 2075.378
        1 6012.194 0.05485 6341.983 0.01562 6106.099
        2 9801.566 0.03044 10099.884 0.01694 9967.644
        3 13423.603 0.001166 13407.950 0.01797 13664.780
        4 16882.448 0.004083 16951.383 0.01893 17202.024
        5 20181.824 0.0005710 20193.347 0.01990 20583.515
        6 23324.620 0.008118 23135.267 0.02093 23812.920
        7 26313.146 0.01637 25882.423 0.02205 26893.357
        8 29148.927 0.01435 28730.690 0.02327 29827.322
        9 31832.367 0.01963 31207.435 0.02464 32616.648
        10 34362.909 0.004397 34211.806 0.02618 35262.441
        11 36738.405 0.01714 36108.527 0.02794 37764.995
        12 38954.943 0.01769 38265.658 0.03000 40123.716
        13 41006.593 0.01487 40396.799 0.03244 42337.026
        14 42884.443 0.01483 42248.544 0.03539 44402.227
        15 44576.005 0.01264 44012.508 0.03902 46315.354
        16 46064.207 0.009428 45629.921 0.04357 48071.083
        17 47325.663 0.006234 47030.644 0.04938 49662.648
        18 48328.541 0.0003463 48311.807 0.05697 51081.932
        19 49026.508 0.005459 49294.146 0.06717 52319.807
        HBr$ \nu $ ${E_\nu }$ ${\delta _{{\text{this work}}}}$ $E_\nu ^{{\text{this work}}}$ $\delta _\nu ^{\text{Q}}$ $E_\nu ^{\text{Q}}$
        0 1314.653 0.02080 1341.993 0.01314 1331.929
        1 3873.566 0.06601 4129.243 0.01762 3941.805
        2 6341.990 0.01130 6413.868 0.01935 6464.682
        3 8719.913 0.01104 8816.207 0.02093 8902.436
        4 11007.012 0.01316 11151.888 0.02259 11255.684
        5 13202.585 0.01387 13385.700 0.02437 13524.341
        6 15305.471 0.01795 15580.146 0.02630 15707.958
        7 17313.970 0.002268 17274.704 0.02841 17805.806
        H35Cl $ \nu $ ${E_\nu }$ ${\delta _{{\text{this work}}}}$ $E_\nu ^{{\text{this work}}}$ $\delta _\nu ^{\text{Q}}$ $E_\nu ^{\text{Q}}$
        0 1483.881 0.01052 1468.276 0.01050 1468.294
        1 4369.857 0.01009 4413.952 0.003299 4384.273
        2 7151.864 0.009209 7217.724 0.006637 7199.330
        3 9830.658 0.01910 10018.462 0.008566 9914.869
        4 12406.710 0.004748 12465.616 0.01028 12534.187
        5 14880.156 0.002706 14839.892 0.01250 15066.200
        6 17250.746 0.002461 17208.284 0.01563 17520.446
        7 19517.778 0.003098 19457.320 0.01906 19889.759
        8 21680.003 0.01529 21348.516 0.02231 22163.716
        9 23735.517 0.01306 23425.579 0.02561 24343.381
        10 25681.608 0.005119 25813.072 0.02871 26418.895
        11 27514.609 0.009392 27256.180 0.03154 28382.336
        12 29229.647 9.641 E-05 29226.829 0.03378 30217.072
        13 30820.291 0.008591 30555.509 0.03507 31901.224
        14 32278.144 0.004052 32408.930 0.03476 33400.117
        Na35Cl $ \nu $ ${E_\nu }$ ${\delta _{{\text{this work}}}}$ $E_\nu ^{{\text{this work}}}$ $\delta _\nu ^{\text{Q}}$ $E_\nu ^{\text{Q}}$
        0 181.899 0.008954 180.270 0.04204 174.252
        1 543.050 0.01550 534.633 0.03299 525.138
        2 900.702 0.007215 894.204 0.03107 872.718
        3 1254.890 0.01144 1240.538 0.03014 1217.063
        4 1605.649 0.005573 1596.700 0.02955 1558.204
        5 1953.013 0.008120 1937.155 0.02912 1896.150
        6 2297.016 0.005233 2284.995 0.02877 2230.937
        7 2637.692 0.001172 2640.784 0.02847 2562.592
        8 2975.075 0.01092 2942.574 0.02821 2891.142
        9 3309.198 0.001195 3305.243 0.02798 3216.614
        10 3640.093 0.01084 3600.653 0.02776 3539.057
        11 3967.795 0.001966 3959.992 0.02755 3858.485
        12 4292.334 0.002171 4283.017 0.02735 4174.918
        下载: 导出CSV

        Na35Cl $ \nu $ ${E_\nu }$ ${\delta _{{\text{this work}}}}$ $E_\nu ^{{\text{this work}}}$ $\delta _\nu ^{\text{Q}}$ $E_\nu ^{\text{Q}}$
        13 4613.743 0.01077 4564.070 0.02717 4488.398
        14 4932.054 0.002617 4919.147 0.02699 4798.950
        15 5247.298 0.01274 5180.428 0.02681 5106.596
        16 5559.506 0.009977 5504.042 0.02665 5411.364
        17 5868.710 0.02119 5744.339 0.02648 5713.289
        18 6174.940 0.003747 6198.078 0.02632 6012.398
        19 6478.226 0.007659 6428.612 0.02617 6308.719
        20 6778.599 0.0008396 6772.914 0.02601 6602.272
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

        [45]

        [46]

        [47]

        [48]

        [49]

        [50]

        [51]

        [52]

        [53]

        [54]

        [55]

        [56]

        [57]

        [58]

        [59]

      • [1] 宋睿, 刘雪梅, 王海滨, 吕皓, 宋晓艳.机器学习辅助的WC-Co硬质合金硬度预测. 必威体育下载 , 2024, 73(12): 126201.doi:10.7498/aps.73.20240284
        [2] 张旭, 丁进敏, 侯晨阳, 赵一鸣, 刘鸿维, 梁生.基于机器学习的激光匀光整形方法. 必威体育下载 , 2024, 73(16): 164205.doi:10.7498/aps.73.20240747
        [3] 张嘉晖.蛋白质计算中的机器学习. 必威体育下载 , 2024, 73(6): 069301.doi:10.7498/aps.73.20231618
        [4] 欧阳鑫健, 张岩星, 王之龙, 张锋, 陈韦嘉, 庄园, 揭晓, 刘来君, 王大威.面向铁电相变的机器学习: 基于图卷积神经网络的分子动力学模拟. 必威体育下载 , 2024, 73(8): 086301.doi:10.7498/aps.73.20240156
        [5] 张逸凡, 任卫, 王伟丽, 丁书剑, 李楠, 常亮, 周倩.机器学习结合固溶强化模型预测高熵合金硬度. 必威体育下载 , 2023, 72(18): 180701.doi:10.7498/aps.72.20230646
        [6] 郭唯琛, 艾保全, 贺亮.机器学习回归不确定性揭示自驱动活性粒子的群集相变. 必威体育下载 , 2023, 72(20): 200701.doi:10.7498/aps.72.20230896
        [7] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺.机器学习在宇宙线粒子鉴别中的应用. 必威体育下载 , 2023, 72(14): 140202.doi:10.7498/aps.72.20230334
        [8] 罗启睿, 沈一凡, 罗孟波.高分子塌缩相变和临界吸附相变的计算机模拟和机器学习. 必威体育下载 , 2023, 72(24): 240502.doi:10.7498/aps.72.20231058
        [9] 管星悦, 黄恒焱, 彭华祺, 刘彦航, 李文飞, 王炜.生物分子模拟中的机器学习方法. 必威体育下载 , 2023, 72(24): 248708.doi:10.7498/aps.72.20231624
        [10] 康俊锋, 冯松江, 邹倩, 李艳杰, 丁瑞强, 钟权加.基于机器学习的非线性局部Lyapunov向量集合预报订正. 必威体育下载 , 2022, 71(8): 080503.doi:10.7498/aps.71.20212260
        [11] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务.通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用. 必威体育下载 , 2022, 71(7): 078702.doi:10.7498/aps.71.20211632
        [12] 林键, 叶梦, 朱家纬, 李晓鹏.机器学习辅助绝热量子算法设计. 必威体育下载 , 2021, 70(14): 140306.doi:10.7498/aps.70.20210831
        [13] 陈江芷, 杨晨温, 任捷.基于波动与扩散物理系统的机器学习. 必威体育下载 , 2021, 70(14): 144204.doi:10.7498/aps.70.20210879
        [14] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山.铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 必威体育下载 , 2019, 68(21): 210502.doi:10.7498/aps.68.20190942
        [15] 郑小丰, 樊群超, 孙卫国, 范志祥, 张燚, 付佳, 李博.用差分收敛法研究NaLi分子部分电子态的完全振动能谱. 必威体育下载 , 2015, 64(20): 203301.doi:10.7498/aps.64.203301
        [16] 韩晓琴.SiF2(1A1)自由基的从头算及势能函数. 必威体育下载 , 2014, 63(23): 233101.doi:10.7498/aps.63.233101
        [17] 韩晓琴, 肖夏杰, 刘玉芳.HNO(1A’)自由基的从头算势能曲线. 必威体育下载 , 2013, 62(19): 193101.doi:10.7498/aps.62.193101
        [18] 张燚, 孙卫国, 付佳, 樊群超, 冯灏, 李会东.用节点变分的代数方法研究双原子体系的完全振动能谱和离解能. 必威体育下载 , 2012, 61(13): 133301.doi:10.7498/aps.61.133301
        [19] 姬广富, 张艳丽, 崔红玲, 李晓凤, 赵峰, 孟川民, 宋振飞.从头算方法研究面心立方铝在高温高压下的热力学状态方程. 必威体育下载 , 2009, 58(6): 4103-4108.doi:10.7498/aps.58.4103
        [20] 梁小蕊, 赵 波, 周志华.几种香豆素衍生物分子的二阶非线性光学性质的从头算研究. 必威体育下载 , 2006, 55(2): 723-728.doi:10.7498/aps.55.723
      计量
      • 文章访问数:2812
      • PDF下载量:62
      • 被引次数:0
      出版历程
      • 收稿日期:2022-10-13
      • 修回日期:2022-12-29
      • 上网日期:2023-02-17
      • 刊出日期:2023-04-05

        返回文章
        返回
          Baidu
          map