搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    李响, 刘云, 朱天鑫, 段传喜

    New rovibrational subbands of Ar-D2O complex in the D2O bending mode region

    Li Xiang, Liu Yun, Zhu Tian-Xin, Duan Chuan-Xi
    PDF
    HTML
    导出引用
    • 稀有气体原子和水分子组成的范德瓦耳斯复合物是研究水和其他原子分子之间相互作用的典型模型. 本文利用中红外连续外腔量子级联激光器结合脉冲超声分子束吸收光谱技术, 在D 2O弯曲振动带( v 2= 1←0)附近测量了Ar-D 2O复合物4个新的振动转动子带. 基于赝双原子分子有效哈密顿量, 本文对测量到的振动转动谱线和前人报道的下能级所涉及的纯转动谱线进行了最小二乘法全局拟合, 得到了包括振动子能级能量、转动常数和离心畸变常数等在内的精确的基态和激发态分子参数. Ar-D 2O的D 2O弯曲振动激发的振动带头被精确确定为1177.92144 (32) cm –1, 该值比D 2O单体的带头红移了约0.458 cm –1. 将从实验得到的振动子能级能量与基于四维势能面的理论计算结果进行了比较, 检验了理论计算方法的精度.
      The intermolecular interactions involving the water molecule play important roles in many fields of physics, chemistry, and biology. High-resolution spectroscopy of Van der Waals complexes formed by a rare gas atom and a water molecule can provide a wealth of information about these intermolecular interactions. The precise experimental data can be used to test the accuracies and efficiencies of various theoretical methods of constructing the intermolecular potential energy surfaces and calculating the bound states. In this work, the high-resolution infrared absorption spectrum of the Ar-D 2O complex in the v 2bending region of D 2O is measured by using an external cavity quantum cascade laser. A segmented rapid-scan data acquisition method is employed. The Ar-D 2O complex is generated in a slit supersonic jet expansion by passing Ar gas through a vessel containing liquid D 2O. Four new rovibrational subbands are assigned in the spectral range of 1150–1190 cm –1, namely $\Sigma \left( {{0_{00}}, {v_2} = 1} \right) \leftarrow \Sigma \left( {{1_{11}}} \right)$ , $\Sigma \left( {{0_{00}}, {v_2} = 1} \right) \leftarrow \Pi \left( {{1_{11}}} \right)$ , $\Sigma \left( {{1_{01}}, {v_2} = 1} \right) \leftarrow \Pi \left( {{1_{10}}} \right)$ and $\Sigma \left( {{1_{01}}, {v_2} = 1} \right) $ $\leftarrow \Pi \left( {{1_{01}}} \right) $ . The first two subbands belong to the otho- species of Ar-D 2O, while the latter two belong to the para- species. The observed rovibrational transitions together with the previously reported pure rotational spectra having the common lower vibrational sub-states are analyzed by a weighted least-squares fitting using a pseudo-diatomic effective Hamiltonian. An experimental error of 10 kHz for the far-infrared transitions and 0.001 cm –1for the infrared transitions are set in the global fitting when using Pickett’s program SPFIT, respectively. The molecular constants including vibrational substate energy, rotational and centrifugal distortion constants, and Coriolis coupling constant, are determined accurately. The previous results for the $\Pi \left( {{1_{11}}, {v_2} = 0} \right)$ substate are found to be likely incorrect. The energy of the $\Sigma \left( {{0_{00}}, {v_2} = 1} \right)$ and $\Sigma \left( {{1_{01}}, {v_2} = 1} \right)$ substates are determined experimentally for the first time. The band origin of Ar-D 2O in the D 2O v 2bending mode region is determined to be 1177.92144(13) cm –1, which is a red shift about 0.458 cm –1compared with the head of D 2O monomer. The experimental vibrational substate energy is compared with its theoretical value based on a four-dimensional intermolecular potential energy surface which includes the normal coordinate of the D 2O v 2bending mode. The experimental and theoretical results are in good agreement with each other. But the calculated energy levels are generally higher than the experimental values, so, there is still much room for improving the theoretical calculations.
          通信作者:段传喜,duanchx@mail.ccnu.edu.cn
        • 基金项目:国家自然科学基金(批准号: 11574107)资助的课题.
          Corresponding author:Duan Chuan-Xi,duanchx@mail.ccnu.edu.cn
        • Funds:Project supported by the National Natural Science Foundation of China (Grant No.11574107).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

      • Assignment $\Pi \left( {{1_{01}}} \right) \leftarrow \Sigma \left( {{1_{01}}} \right)$b $\Pi \left( {{1_{10}}} \right) \leftarrow \Sigma \left( {{1_{01}}} \right)$b $\Sigma \left( {{1_{11}}} \right) \leftarrow \Sigma \left( {{0_{00}}} \right)$c $\Pi \left( {{1_{11}}} \right) \leftarrow \Sigma \left( {{0_{00}}} \right)$c
        P(15) 593671.56(–85)
        P(14) 594125.10(89)
        P(13) 594617.34(63)
        P(12) 595159.22(–50)
        P(11) 595761.68(–81)
        P(10) 596438.86(–22)
        P(9) 286151.60(1) 380426.47(0) 597208.18(5)
        P(8) 290294.16(–2) 383658.52(1) 598095.30(–5)
        P(7) 294584.78(0) 387168.84(0) 599137.41(19)
        P(6) 299029.93(–1) 390958.16(1) 600387.39(59) 529456.94(–55)
        P(5) 303635.47(1) 395026.72(2) 601924.22(95) 538944.20(–44)
        P(4) 308406.24(0) 399374.40(0) 603862.02(–15) 548068.80(41)
        P(3) 313346.09(–1) 404000.86(0) 606374.16(–75)
        P(2) 318457.69(–2) 408905.45(1) 609688.76(68) 564472.24(–33)
        P(1) 614050.94(–94)
        Q(1) 329209.16(0) 419686.25(0) 576854.64(14)
        Q(2) 329225.88(0) 419967.95(2) 576845.60(10)
        Q(3) 329249.43(0) 420389.80(–2) 576832.02(8)
        Q(4) 329278.03(0) 420951.17(1) 576813.78(2)
        Q(5) 329309.36(0) 421650.90(0) 576790.88(1)
        Q(6) 329340.61(–1) 422487.66(1) 576763.12(–4)
        Q(7) 329368.59(0) 423459.73(0) 576730.48(–3)
        Q(8) 329389.75(1) 424565.04(0) 576692.81(1)
        Q(9) 329400.26(0) 425801.07(0) 586649.90(–1)
        Q(10) 576601.72(3)
        Q(11) 576548.01(–4)
        Q(12) 576488.93(5)
        Q(13) 576424.08(–2)
        Q(14)
        R(0) 334830.48(0) 425278.22(1) 626461.13((64) 581244.48(–50)
        R(1) 340629.81(2) 431284.54(–2) 634322.63(–7)
        R(2) 346594.45(1) 437562.59(–1) 642975.68(–31) 587181.98(–24)
        R(3) 352719.13(1) 444110.37(1) 652188.92(–61) 589211.88(44)
        R(4) 358997.30(0) 450925.49(–2) 661789.14(–50) 590861.04(70)
        R(5) 365421.36(5) 458005.35(–1) 671655.74(25) 592246.68(33)
        R(6) 371982.39(–4) 681704.80(21) 593449.38(99)
        R(7) 378671.09(–2) 691879.92(–12) 594518.75(–43)
        R(8) 385477.11(4) 702141.48(–1) 595494.34(–90)
        R(9) 392389.53(–2) 712459.36(2) 596401.33(–39)
        R(10) 722811.14(14) 597256.58(–2)
        R(11) 733178.48(–15) 598073.14(10)
        R(12) 598861.05(8)
        R(13) 599628.49(43)
        R(14) 600380.64(31)
        R(15) 601122.42(7)
        R(16) 601856.02(–96)
        R(17) 602584.84(46)
        a括号中的数字为 (实验值-计算值)×102;
        b实验观测谱线来自于文献[2];
        c实验观测谱线来自于文献[7].
        下载: 导出CSV

        Assignment $\Sigma \left( {{0_{00}}} \right) \leftarrow \Sigma \left( {{1_{11}}} \right)$ $\Sigma \left( {{0_{00}}} \right) \leftarrow \Pi \left( {{1_{11}}} \right)$ $\Sigma \left( {{1_{01}}} \right) \leftarrow \Pi \left( {{1_{10}}} \right)$ $\Sigma \left( {{1_{01}}} \right) \leftarrow \Pi \left( {{1_{01}}} \right)$
        P(13) 1157.9570(5)
        P(12) 1157.9810(0)
        P(11) 1158.0070(4)
        P(10) 1158.0340(3) 1164.6769(–2)
        P(9) 1158.0627(0) 1161.7230(–17) 1164.9049(6)
        P(8) 1158.0939(–3) 1161.9839(2) 1165.1281(–3)
        P(7) 1158.1287(–2) 1162.2345(–1) 1165.3492(3)
        P(6) 1158.1681(–1) 1162.4770(–2) 1165.5657(2)
        P(5) 1158.2135(–3) 1162.7108(–7) 1165.7774(–5)
        P(4) 1158.2685(2) 1162.9371(–2) 1165.9857(–1)
        P(3) 1158.3354(–2) 1163.1541(–5) 1166.1901(11)
        P(2) 1158.4209(–4) 1163.3632(–1) 1166.3873(1)
        P(1) 1158.5331(–1) 1166.5815(10)
        Q(1) 1163.7504(2)
        Q(2) 1163.7416(1)
        Q(3) 1163.7289(3)
        Q(4) 1158.6820(–3) 1163.7117(4)
        Q(5) 1158.6835(–3) 1163.6902(3)
        Q(6) 1158.6853(–2) 1163.6645(3) 1166.7712(0)
        Q(7) 1158.6874(–1) 1163.6348(4) 1166.7728(–1)
        Q(8) 1158.6899(0) 1163.6005(0) 1166.7752(0)
        Q(9) 1158.6927(1) 1163.5627(1) 1166.7782(0)
        Q(10) 1158.6957(1) 1163.5207(–1) 1166.7821(1)
        Q(11) 1158.6991(1) 1163.4753(1) 1166.7868(0)
        Q(12) 1158.7028(0) 1163.4260(0) 1166.7927(0)
        Q(13) 1158.7070(1) 1163.3730(–3)
        Q(14) 1163.3171(–1)
        R(1) 1157.5857(8) 1167.1275(0)
        R(2) 1157.6960(2) 1159.3539(–3) 1164.2752(0) 1167.2987(–4)
        R(3) 1157.7804(3) 1159.6412(0) 1164.4305(–5) 1167.4657(2)
        R(4) 1157.8455(0) 1159.9463(1) 1164.5782(2) 1167.6264(0)
        R(5) 1157.8977(2) 1164.7160(0) 1167.7819(–4)
        R(6) 1157.9401(0) 1164.8454(5) 1167.9332(0)
        R(7) 1157.9762(2) 1164.9655(5) 1168.0803(10)
        R(8) 1165.0767(6) 1168.2210(2)
        R(9) 1165.1766(–17) 1168.3581(1)
        R(10) 1158.0580(0) 1163.2720(2) 1168.4914(3)
        R(11) 1158.0795(–5) 1168.6204(1)
        R(12) 1158.0994(–6) 1168.7455(–4)
        R(13) 1168.8687(5)
        R(14) 1158.1360(–1)
        R(15) 1158.1528(2)
        a括号中的数字为 (实验值-计算值) ×104.
        下载: 导出CSV

        Parameter Ground state D2O (v2= 1) excited
        $\Sigma \left( {{0_{00}}} \right)$ Ref. [7] This work This work
        v/cm–1 1177.92144 (32)
        $B$/MHz 2795.93 2795.86781(44) 2797.88(11)
        $D$/kHz 78.137 77.7551(54) 77.16(46)
        $H$/Hz –2.406 –2.930 (19) –2.930(19)b
        $\Sigma \left( {{1_{11}}} \right)$ Ref. [7] This work Ref. [11]
        v/cm–1) 20.669081(11) 20.6690759(17) 1199.84075(22)
        $B$/MHz) 2808.409(30) 2808.36099(61) 2835.137(51)
        $D$/kHz) 136.24(89) 136.328(14) 137.005(33)
        $H$/Hz) –23.3(69) –20.27(10)
        $L$/Hz) –0.084(18) –0.09110(29)
        $\Pi \left( {{1_{11}}} \right)$ Ref. [7] This work Ref. [11]
        v/cm–1) 19.335135(11) 19.2419471 (16) 1198.12738(22)
        $B$/ MHz 2793.526(22) 2793.46903(54) 2767.084(51)
        ${D^{\text{e}}}$/kHz 13.84(74) 13.308(12) 20.806(33)
        ${D^{\text{f}}}$/ kHz 79.06(33) 78.7624(73)
        $ {H^{\text{e}}} $/Hz –1.49(58) –17.565(94)
        $ {H^{\text{f}}} $/Hz –1.7(13) –1.902(27)
        ${L^{\text{e}}}$/Hz 0.140(14) 0.14473(24)
        $\beta $/MHz 5141.09(12) 3635.3021(12) 3509.22(19)
        $\Sigma \left( {{1_{01}}} \right)$ Ref. [2] This work This work
        v/cm–1 1177.74889(26)
        $B$/MHz 2729.114(10) 2729.11326(75) 2734.85(98)
        $D$/kHz 52.96(24) 52.965(19) 53.90(42)
        $H$/Hz –13.5(17) –13.40(13) –13.40(13)
        $\Pi \left( {{1_{01}}} \right)$ Ref. [2] This work Ref. [12]
        v/cm–1 10.9809467(18) 10.9809468(17) 1189.41215(11)
        ${B^{\text{e}}}$/MHz 2815.2130(92) 2815.21185(76)
        ${B^{\text{f}}}$/MHz 2733.497(12) 2742.423 (66)
        ${D^{\text{e}}}$/kHz 110.24(18) 110.229(16)
        ${D^{\text{f}}}$/kHz 78.66(31) 78.665(28) 75.65(25)
        $ {H^{\text{e}}} $/Hz 23.2(11) 23.228(96)
        $ {H^{\text{f}}} $/Hz 5.0(23) 5.07(21)
        $\Pi \left( {{1_{10}}} \right)$ Ref. [2] This work Ref. [11]
        v/cm–1 13.9945245(20) 13.9945245(19) 1192.86911(21)
        ${B^{\text{e}}}$/MHz 2866.584(19) 2866.5846(12) 2855.13(60)
        ${B^{\text{f}}}$/MHz 2799.615(18) 2799.6154(11) 2793.37(19)
        ${D^{\text{e}}}$/kHz 61.65(90) 61.646(40) 47.97(79)
        ${D^{\text{f}}}$/kHz 63.21(68) 63.211(30) 35.08(20)
        $ {H^{\text{e}}} $/Hz –32(13) –31.95(37)
        $ {H^{\text{f}}} $/Hz –22.2(74) –22.22(22)
        a括号中的数字为拟合标准偏差;
        b固定在基态值上.
        下载: 导出CSV

        v2=0 D2Ov2=1 excited
        Exp. Theo.c Exp.-Theo. Exp. Theo.c Exp.-Theo.
        $\Pi \left( {{1_{11}}} \right)$a 19.2419 19.4189 –0.177 20.2996 20.4349 –0.1353
        $\Sigma \left( {{1_{11}}} \right)$a 20.6691 20.9706 –0.3015 21.3633 22.0928 –0.6647
        $\Pi \left( {{1_{01}}} \right)$b 10.9809 10.9785 0.0024 11.6633 11.6329 0.0304
        $ \Pi \left( {{1_{10}}} \right) $b 13.9945 14.4571 –0.4624 15.1202 15.4173 –0.2971
        a$\Pi \left( {{1_{11}}} \right)$和$\Sigma \left( {{1_{11}}} \right)$相对于$\Sigma \left( {{0_{00}}} \right)$的能级间隔;
        b$\Pi \left( {{1_{01}}} \right)$和$\Pi \left( {{1_{10}}} \right)$相对于$\Sigma \left( {{1_{01}}} \right)$的能级间隔;
        c理论计算值来自于文献[33] .
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

      • [1] 范俊宇, 高楠, 王鹏举, 苏艳.LLM-105的分子间相互作用和热力学性质. 必威体育下载 , 2024, 73(4): 046501.doi:10.7498/aps.73.20231696
        [2] 王辉耀, 魏福贤, 吴雨廷, 彭腾, 刘俊宏, 汪波, 熊祖洪.激基复合物有机发光二极管中平衡载流子增强电荷转移态的反向系间窜越过程. 必威体育下载 , 2023, 72(17): 177201.doi:10.7498/aps.72.20230949
        [3] 赵茜, 陈敬, 彭腾, 刘俊宏, 汪波, 陈晓莉, 熊祖洪.激基复合物有机发光二极管中系间窜越和反向系间窜越过程的非单调电流依赖关系. 必威体育下载 , 2023, 72(16): 167201.doi:10.7498/aps.72.20230765
        [4] 刘秀成, 杨智, 郭浩, 陈颖, 罗向龙, 陈健勇.金刚石/环氧树脂复合物热导率的分子动力学模拟. 必威体育下载 , 2023, 72(16): 168102.doi:10.7498/aps.72.20222270
        [5] 袁洪瑞, 刘涛, 朱天鑫, 刘云, 李响, 陈杨, 段传喜.SF6分子的10.6 μm高分辨射流冷却激光吸收光谱. 必威体育下载 , 2023, 72(6): 063301.doi:10.7498/aps.72.20222285
        [6] 王晓璐, 令狐荣锋, 宋晓书, 吕兵, 杨向东.氦原子与卤族氢化物分子相互作用势的研究. 必威体育下载 , 2013, 62(16): 163101.doi:10.7498/aps.62.163101
        [7] 孙伟峰, 王暄.聚酰亚胺/铜纳米颗粒复合物的分子动力学模拟研究. 必威体育下载 , 2013, 62(18): 186202.doi:10.7498/aps.62.186202
        [8] 李琳, 王暄, 孙伟峰, 雷清泉.聚乙烯/银纳米颗粒复合物的分子动力学模拟研究. 必威体育下载 , 2013, 62(10): 106201.doi:10.7498/aps.62.106201
        [9] 赵艳红, 刘海风, 张其黎.高温高压下爆轰产物中不同种分子间的相互作用. 必威体育下载 , 2012, 61(23): 230509.doi:10.7498/aps.61.230509
        [10] 刘天元, 孙成林, 里佐威, 周密.Raman光谱方法研究三氯甲烷与苯分子间的 C/H相互作用. 必威体育下载 , 2012, 61(10): 107801.doi:10.7498/aps.61.107801
        [11] 王杰敏, 孙金锋.采用多参考组态相互作用方法研究AsN( X1 + )自由基的光谱常数与分子常数. 必威体育下载 , 2011, 60(12): 123103.doi:10.7498/aps.60.123103
        [12] 赵艳红, 刘海风, 张弓木, 张广财.高温高压下爆轰产物分子间相互作用的研究. 必威体育下载 , 2011, 60(12): 123401.doi:10.7498/aps.60.123401
        [13] 余春日, 黄时中, 史守华, 程新路, 杨向东.Ne-HBr复合物CCSD(T)势能面对转动非弹性分波截面的影响. 必威体育下载 , 2007, 56(10): 5739-5745.doi:10.7498/aps.56.5739
        [14] 史 伟, 房昌水, 徐志凌, 潘奇伟, 赵 显, 顾庆天, 许 东, 余金中.聚合物薄膜中生色团分子间的相互作用对其宏观二阶非线性的影响. 必威体育下载 , 2000, 49(5): 904-910.doi:10.7498/aps.49.904
        [15] 冯少新, 金庆华, 郭振亚, 李宝会, 丁大同.碱土氟化物中离子间相互作用势经验参数的确定. 必威体育下载 , 1998, 47(11): 1811-1817.doi:10.7498/aps.47.1811
        [16] 颜家壬, 梅玉平.光纤孤子间的相互作用. 必威体育下载 , 1996, 45(7): 1122-1129.doi:10.7498/aps.45.1122
        [17] 戴长建.自电离序列间的相互作用. 必威体育下载 , 1994, 43(3): 369-379.doi:10.7498/aps.43.369
        [18] 郭长志, 黄永箴.近单模半导体激光器中模式间相互作用对光谱线宽的影响. 必威体育下载 , 1990, 39(7): 59-65.doi:10.7498/aps.39.59-2
        [19] 于宝善, 胡代林, 苏滨丽.分子间相互作用对联合散射谱带强度的影响. 必威体育下载 , 1966, 22(6): 714-718.doi:10.7498/aps.22.714
        [20] 江安才.直线式不对称三原分子之振动转动光谱及其势能函数. 必威体育下载 , 1944, 5(1): 49-63.doi:10.7498/aps.5.49
      计量
      • 文章访问数:2577
      • PDF下载量:42
      • 被引次数:0
      出版历程
      • 收稿日期:2022-09-02
      • 修回日期:2022-09-22
      • 上网日期:2022-10-18
      • 刊出日期:2023-01-05

        返回文章
        返回
          Baidu
          map