\begin{document}$ {{{\rm{A}}^2}}{\Sigma ^ - } \to {{{\rm{X}}^2}}\Pi $\end{document}, \begin{document}$ {{{\rm{a}}^4}}\Sigma _{1/2}^ - \to {{{\rm{X}}^2}}{\Pi _{1/2}} $\end{document}\begin{document}$ {{{\rm{A}}^2}}\Sigma _{1/2}^ - \to {{{\rm{X}}^2}}{\Pi _{1/2}} $\end{document}跃迁的弗兰克-康登因子、自发辐射速率和自发辐射寿命, 计算结果表明\begin{document}$ {{{\rm{a}}^4}}\Sigma _{1/2}^ - \to {{{\rm{X}}^2}}{\Pi _{1/2}} $\end{document}阻禁跃迁的强度很小. 本文的计算结果为以后AsH+离子的光谱实验研究提供理论基础."> - 必威体育下载

搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    侯秋宇, 关皓益, 黄雨露, 陈世林, 杨明, 万明杰

    Electronic structures and transition properties of AsH+cation

    Hou Qiu-Yu, Guan Hao-Yi, Huang Yu-Lu, Chen Shi-Lin, Yang Ming, Wan Ming-Jie
    PDF
    HTML
    导出引用
    • 采用多参考组态相互作用方法计算了AsH +离子前3个离解极限所对应的8个电子态 (X 2Π, a 4Σ , A 2Σ , b 4Π, B 2Δ, C 2Σ +, D 2Π, 2 2Σ +) 的电子结构. As原子选择了aug-cc-pwCV5Z-PP相对论赝势基组. 在计算中考虑了Davidson修正, 芯-价电子关联和自旋-轨道耦合效应. 拟合得到了所有态的光谱常数, 离解能越大的电子态, 其谐振频率越大, 平衡核间距越小. 考虑自旋-轨道耦合效应后, 由于避免交叉, B 2Δ 3/2和B 2Δ 5/2变为双势阱结构. 最后预测了 $ {{{\rm{A}}^2}}{\Sigma ^ - } \to {{{\rm{X}}^2}}\Pi $ , $ {{{\rm{a}}^4}}\Sigma _{1/2}^ - \to {{{\rm{X}}^2}}{\Pi _{1/2}} $ $ {{{\rm{A}}^2}}\Sigma _{1/2}^ - \to {{{\rm{X}}^2}}{\Pi _{1/2}} $ 跃迁的弗兰克-康登因子、自发辐射速率和自发辐射寿命, 计算结果表明 $ {{{\rm{a}}^4}}\Sigma _{1/2}^ - \to {{{\rm{X}}^2}}{\Pi _{1/2}} $ 阻禁跃迁的强度很小. 本文的计算结果为以后AsH +离子的光谱实验研究提供理论基础.
      Potential energy curves (PECs), dipole moments (DMs) and transition dipole moments (TDMs) of the X 2Π, a 4Σ , A 2Σ , b 4Π, B 2Δ, C 2Σ +, D 2Π, 2 2Σ +states correlating with the three lowest dissociation channels of AsH +cation are calculated by using the multireference configuration interaction (MRCI) method. The Davidson correction, core-valence (CV) correlation, and spin-orbit coupling (SOC) effect are all considered. The aug-cc-pV5Z all-electron basis set of H atom and the aug-cc-pwCV5Z-PP pseudopotential basis set of As atom are both selected in the calculation. In the complete active space self-consistent field (CASSCF) calculation, H (1s) and As (4s4p) shell are selected as active orbitals, As (3p3d) shells are selected as closed orbitals, which keeps doubly occupation, the remaining electrons are in the frozen orbitals. In the MRCI calculation, As (3p3d) shells are used for CV correlation, and the calculation accuracy can be improved. The SOC effects are considered with Breit-Pauli operators. All calculated states are bound states. The X 2Π is the ground state, which is a deep potential well, the dissociation energy is 3.100 eV. The b 4Π, C 2Σ +and D 2Π are weakly bound states. The spectroscopic parameters are obtained by solving radial Schrodinger equation. To the best of our knowledge, there has been no study of the spectroscopy of AsH +cation so far. Comparing with Ⅴ-hydride cations MH +( M= N, P, As), the orders of the energy levels of the low-lying states for three ions are identical. The dissociation energy and harmonic frequency both decrease with the increase of the atomic weight of M. At spin-free level, the PEC of b 4Π state and the PEC of B 2Δ state cross at about 1.70 Å. When SOC effects are taken into account, according to the rule of avoid-crossing, the $ {{{\rm{B}}^2}}{\Delta _{3/2}} $ state and $ {{{\rm{B}}^2}}{\Delta _{5/2}} $ state change to the double potential wells, and the avoided crossing between the $ {{{\rm{B}}^2}}{\Delta _{3/2}} $ ( $ {{{\rm{B}}^2}}{\Delta _{3/2}} $ ) state and ${{\rm{b}}^4}{\Pi _{3/2}}$ ( ${{\rm{b}}^4}{\Pi _{5/2}}$ ) state is observed. The transition dipole moment (TDM) of the $ {{{\rm{A}}^2}}{\Sigma ^ - } \to {{{\rm{X}}^2}}\Pi $ , $ {{{\rm{a}}^4}}\Sigma _{1/2}^ - \to {{{\rm{X}}^2}}{\Pi _{1/2}} $ and $ {{{\rm{A}}^2}}\Sigma _{1/2}^ - \to {{{\rm{X}}^2}}{\Pi _{1/2}} $ transition are also calculated. The TDM at the equilibrium distance of the $ {{{\rm{a}}^4}}\Sigma _{1/2}^ - \to {{{\rm{X}}^2}}{\Pi _{1/2}} $ spin-forbidden reaches 0.036 Debye, therefore, the SOC effect plays an important role. Based on the accurate PECs and PDMs, the Franck-Condon factors, spontaneous radiative coefficients, and spontaneous radiative lifetimes of the $ {{{\rm{A}}^2}}{\Sigma ^ - } \to {{{\rm{X}}^2}}\Pi $ , $ {{{\rm{a}}^4}}\Sigma _{1/2}^ - \to {{{\rm{X}}^2}}{\Pi _{1/2}} $ , and $ {{{\rm{A}}^2}}\Sigma _{1/2}^ - \to {{{\rm{X}}^2}}{\Pi _{1/2}} $ transition are also calculated.
          通信作者:万明杰,wanmingjie1983@sina.com
        • 基金项目:宜宾学院预研项目(批准号: 2019YY06)、宜宾学院计算物理四川省高等学校重点实验室开放基金(批准号: YBXYJSWL-ZD-2020-001)和宜宾学院培育项目(批准号: 2021PY71)资助的课题.
          Corresponding author:Wan Ming-Jie,wanmingjie1983@sina.com
        • Funds:Project supported by the Pre-Research Project of Yibin University, China (Grant No. 2019YY06), the Open Research Fund of Computational Physics Key Laboratory of Sichuan Province, Yibin University, China (Grant No. YBXYJSWL-ZD-2020-001), and the Cultivation Project of Yibin University, China (Grant No. 2021PY71).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

      • 原子态 Λ-S态 ΔE/cm–1
        本文工作 实验值[28]
        As+(3Pg)+H(2Sg) X2Π, a4Σ,
        A2Σ, b4Π
        0 0
        As+(1Dg)+H(2Sg) B2Δ, C2Σ+, D2Π 8222.18 8752
        As+(1Sg)+H(2Sg) 22Σ+ 20400.69 21252
        下载: 导出CSV

        Λ-S states Re ωe/cm–1 ωeχe/cm–1 Be/cm–1 De/eV Te/cm–1
        X2 1.5131 2222.58 42.08 7.3632 3.100 0
        a4Σ 1.6211 1433.42 52.39 6.4528 1.208 15260.18
        A2Σ 2.0523 598.03 35.70 4.0257 0.313 22481.02
        b4 3.9651 111.89 27.81 1.1024 0.015 24885.54
        B2Δ 1.7260 1139.52 49.11 5.6847 0.821 26654.73
        C2Σ+ 3.2885 140.54 22.86 1.6101 0.028 32911.82
        D2 3.3767 172.32 29.15 1.5005 0.035 32993.70
        22Σ+ 2.4140 532.54 47.36 2.9263 0.188 43887.70
        下载: 导出CSV

        分子离子 Λ-S态 Re ωe/cm–1 De/eV Te/cm–1
        NH+ X2 1.080a 2810.6a 4.40a 0
        a4Σ ~1.105b ~2520b 3.66c 509d
        A2Σ 1.206a 1578.2a 1.76a 22161.27a
        B2Δ 1.161a 2011.2a 3.25a 23331a
        PH+ X2 1.4226e 2412.79e 3.525e 0
        a4Σ 1.4816e 1832.51e 1.790e 13998e
        A2Σ 1.7914e 823.68e 0.490e 24476e
        B2Δ 1.5454e 1512.20e 1.277e 26322e
        AsH+ X2 1.5131f 2222.58f 3.100f 0
        a4Σ 1.6211f 1433.42f 1.208f 15260.18f
        A2Σ 2.0523f 598.03f 0.313f 22481.02f
        B2Δ 1.7260f 1139.52f 0.188f 43887.70f
        注:a文献[10] ,b文献[29] ,c文献[30] ,d文献[31] ,e文献[14],e本文计算值.
        下载: 导出CSV

        原子态 Ω态 ΔE/cm–1
        本文工作 实验值[28]
        As+(3P0)+H(2S1/2) 1/2 0 0
        As+(3P1)+H(2S1/2) 3/2, 1/2, 1/2 1090.35 1061
        As+(3P2)+H(2S1/2) 5/2, 3/2, 3/2, 1/2, 1/2 2721.66 2540
        As+(1D2)+H(2S1/2) 5/2, 3/2, 3/2, 1/2, 1/2 11252.94 10093
        As+(1S0)+H(2S1/2) 1/2 24909.88 22593
        下载: 导出CSV

        Ω states Re ωe/cm–1 ωeχe/cm–1 Be/cm–1 De/eV Te/cm–1
        $ {{{\rm{X}}^2}}{\Pi _{1/2}} $ 1.5146 2339.14 41.99 7.3592 3.314 0
        $ {{{\rm{X}}^2}}{\Pi _{3/2}} $ 1.5121 2344.11 42.99 7.3647 3.216 1696.92
        $ {{{\rm{a}}^4}}\Sigma _{1/2}^ - $ 1.6222 1535.88 58.51 6.4447 1.248 17777.19
        $ {{{\rm{a}}^4}}\Sigma _{3/2}^ - $ 1.6210 1688.21 69.69 6.4554 1.249 17910.08
        $ {{{\rm{A}}^2}}\Sigma _{1/2}^ - $ 2.0581 685.64 35.99 3.9976 0.400 25773.03
        $ {{{\rm{B}}^2}}{\Delta _{3/2}} $ 第一势阱 1.7285 1175.34 58.14 5.6857 0.321 30513.22
        第二势阱 3.2405 333.26 49.99 1.7215 0.076 28497.77
        $ {{{\rm{B}}^2}}{\Delta _{5/2}} $ 第一势阱 1.7259 1186.52 51.97 5.6923 0.356 30548.89
        第二势阱 3.3318 283.60 49.29 1.5654 0.055 29071.95
        下载: 导出CSV

        跃迁 ν′ ν″= 0 ν″= 1 ν″= 2 ν″= 3 ν″= 4 ν″= 5 ΣA τ= 1/ΣA
        A2Σ↔ X2Π 0 0.0056 0.0280 0.0722 0.1275 0.1715 0.1843
        2295.52 5374.75 6276.27 4791.31 2627.48 1065.87 22838.76 43.75
        $ {{{\rm{a}}^4}}\Sigma _{1/2}^ - \to {{{\rm{X}}^2}}{\Pi _{1/2}} $ 0 0.6817 0.2447 0.0613 0.0107 0.0014 0.0001
        1545.42 319.72 60.84 8.08 0.74 0.04 1934.85 517
        $ {{{\rm{A}}^2}}\Sigma _{1/2}^ - \to {{{\rm{X}}^2}}{\Pi _{1/2}} $ 0 0.0041 0.0216 0.0588 0.1098 0.1565 0.1789
        3036.67 7910.09 10373.6 8987.8 5672.57 2703.67 40012.76 24.99
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

      • [1] 王新宇, 王艺霖, 石虔韩, 汪庆龙, 于洪洋, 金园园, 李松.SbS电子基态及激发态势能曲线和振动能级的理论研究. 必威体育下载 , 2022, 71(2): 023101.doi:10.7498/aps.71.20211441
        [2] 郭芮, 谭涵, 袁沁玥, 张庆, 万明杰.LiCl阴离子的光谱性质和跃迁性质. 必威体育下载 , 2022, 71(4): 043101.doi:10.7498/aps.71.20211688
        [3] 侯秋宇, 关皓益, 黄雨露, 陈世林, 杨明, 万明杰.. 必威体育下载 , 2022, 0(0): .doi:10.7498/aps.7120221104
        [4] 尹俊豪, 杨涛, 印建平.基于 ${{\bf{A}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Pi}} }}_{{\boldsymbol{1/2}}}{\boldsymbol{\leftarrow }}{{\bf{X}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Sigma }}}}_{{\boldsymbol{1/2}}}$ 跃迁的CaH分子激光冷却光谱理论研究. 必威体育下载 , 2021, 70(16): 163302.doi:10.7498/aps.70.20210522
        [5] 高峰, 张红, 张常哲, 赵文丽, 孟庆田.SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究. 必威体育下载 , 2021, 70(15): 153301.doi:10.7498/aps.70.20210450
        [6] 王新宇, 王艺霖, 石虔韩, 汪庆龙, 于洪洋, 金园园, 李松.SbS 电子基态及激发态的势能曲线和振动能级的理论研究. 必威体育下载 , 2021, (): .doi:10.7498/aps.70.20211441
        [7] 郭芮, 谭涵, 袁沁玥, 张庆, 万明杰.LiCl-阴离子的光谱性质和跃迁性质. 必威体育下载 , 2021, (): .doi:10.7498/aps.70.20211688
        [8] 万明杰, 柳福提, 黄多辉.考虑自旋-轨道耦合效应下SeH阴离子的光谱和跃迁性质. 必威体育下载 , 2021, 70(3): 033101.doi:10.7498/aps.70.20201413
        [9] 滑亚文, 刘以良, 万明杰.SeH+离子低激发态的电子结构和跃迁性质的理论研究. 必威体育下载 , 2020, 69(15): 153101.doi:10.7498/aps.69.20200278
        [10] 万明杰, 李松, 金成国, 罗华锋.激光冷却SH阴离子的理论研究. 必威体育下载 , 2019, 68(6): 063103.doi:10.7498/aps.68.20182039
        [11] 万明杰, 罗华锋, 袁娣, 李松.激光冷却KCl阴离子的理论研究. 必威体育下载 , 2019, 68(17): 173102.doi:10.7498/aps.68.20190869
        [12] 罗华锋, 万明杰, 黄多辉.BH+离子基态及激发态的势能曲线和跃迁性质的研究. 必威体育下载 , 2018, 67(4): 043101.doi:10.7498/aps.67.20172409
        [13] 刘华兵, 袁丽, 李秋梅, 谌晓洪, 杜泉, 金蓉, 陈雪连, 王玲.6Li32S双原子分子的光谱和辐射跃迁理论研究. 必威体育下载 , 2016, 65(3): 033101.doi:10.7498/aps.65.033101
        [14] 王杰敏, 王希娟, 陶亚萍.75As32S+和75As34S+离子的光谱常数与分子常数. 必威体育下载 , 2015, 64(24): 243101.doi:10.7498/aps.64.243101
        [15] 李桂霞, 姜永超, 凌翠翠, 马红章, 李鹏.HF+离子在旋轨耦合作用下电子态的特性. 必威体育下载 , 2014, 63(12): 127102.doi:10.7498/aps.63.127102
        [16] 李松, 韩立波, 陈善俊, 段传喜.SN-分子离子的势能函数和光谱常数研究. 必威体育下载 , 2013, 62(11): 113102.doi:10.7498/aps.62.113102
        [17] 施德恒, 牛相宏, 孙金锋, 朱遵略.BF自由基X1+和a3态光谱常数和分子常数研究. 必威体育下载 , 2012, 61(9): 093105.doi:10.7498/aps.61.093105
        [18] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略.SO+离子b4∑-态光谱常数和分子常数研究. 必威体育下载 , 2012, 61(24): 243102.doi:10.7498/aps.61.243102
        [19] 魏洪源, 熊晓玲, 刘国平, 罗顺忠.TiO基态 (X 3 Δr) 的势能函数与光谱常数. 必威体育下载 , 2011, 60(6): 063401.doi:10.7498/aps.60.063401
        [20] 刘慧, 施德恒, 孙金锋, 朱遵略.MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数. 必威体育下载 , 2011, 60(6): 063101.doi:10.7498/aps.60.063101
      计量
      • 文章访问数:5446
      • PDF下载量:63
      • 被引次数:0
      出版历程
      • 收稿日期:2022-06-02
      • 修回日期:2022-07-13
      • 上网日期:2022-10-27
      • 刊出日期:2022-11-05

        返回文章
        返回
          Baidu
          map