-
极化激元—光与物质中的电子、声子、激子或磁振子等发生强耦合而形成的一种新的集体振荡模式, 近年来在纳米光子学领域受到了广泛的关注. 低维材料极化激元拥有的高空间压缩比、低损耗、光电可调控等特点使其在微纳光子学器件中有着极高的潜在应用价值, 比如石墨烯中波长可调的等离极化激元、六方氮化硼中高质量的双曲声子极化激元、三氧化钼中面内各向异性的拓扑声子极化激元、碳纳米管中的一维拉廷格液体等离极化激元等. 这些极化激元相互之间以及极化激元与外场之间还能进一步发生显著的耦合相互作用, 产生各种丰富新奇的物理现象, 极大地拓展了极化激元的应用前景. 本文以几种典型的低维纳米材料中极化激元的耦合特性为例, 从表征纳米极化激元的扫描近场光学显微技术出发, 首先简单介绍几种典型极化激元的基本性质, 然后详细讨论各种极化激元之间以及极化激元与外场的耦合, 最后展望极化激元耦合作用的潜在应用.
-
关键词:
- 极化激元/
- 低维材料/
- 耦合特性/
- 扫描近场光学显微技术
Polaritons, i.e. new collective modes formed by the strong coupling between light and electrons, phonons, excitons, or magnons in matter, have recently received extensive attention. Polaritons in low-dimensional materials exhibit strong spatial confinement, high quality factor, and gate-tunability. Typical examples include gate-tunable graphene surface plasmon polaritons, high-quality hyperbolic phonon polaritons in hexagonal boron nitride, topological phonon polaritons in α-MoO 3,and one-dimensional Luttinger-liquid plasmon polaritons in carbon nanotubes. These unique properties make polaritons an excellent candidate for future nano-photonics devices. Further, these polaritons can significantly interact with each other, resulting in a variety of polariton-polariton coupling phenomena, greatly expanding their applications. In this review paper, we first introduce scanning near-field optical microscopy, i.e. the technique used to probe polaritons in low-dimensional materials, then give a brief introduction to the basic properties of polaritons. Next, we discuss in detail the coupling behavior between various polaritons. Finally, potential applications of polaritons coupling are proposed.-
Keywords:
- polaritons/
- low-dimensional materials/
- coupling behavior/
- scanning near-field optical spectroscopy
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76]
计量
- 文章访问数:6927
- PDF下载量:452
- 被引次数:0